期刊文献+

一种利用点云强度特征的交通标志线提取优化算法 被引量:3

An optimal algorithm for extracting traffic lines using point cloud intensity features
下载PDF
导出
摘要 针对车载道路点云中交通标线的提取问题,设计了一种联合强度特征图像和边缘检测的交通标线提取方法。该方法首先将道路点云路面转换成点云强度特征图像并进行局部二值化操作,然后利用改进的Canny算子进行边缘检测获得强度梯度图像,最后进行连通区域分析实现对交通标线的精确提取。通过5组具有不同标线类型数据的实验结果表明,该方法提取交通标线的正确度、完整度和精度均超过90%,证明了本文方法的有效性和适用性。 Aiming at the problem of the extraction of traffic markings in the vehicle-borne road point clouds,a traffic marking extraction method combining intensity feature images and edge detection is designed.This method first converts the road point cloud pavement into a point cloud intensity feature image and performs a local binarization operation,then uses the improved Canny operator to perform edge detection to obtain the intensity gradient image,and finally performs connected area analysis to realize the analysis of traffic marking precise extraction.The experimental results of five sets of data with different marking types show that the accuracy,completeness and precision of the method are all over 90%,which proves the effectiveness and applicability of the method in this paper.
作者 周建 束蝉方 Zhou Jian;Shu Chanfang(School of Geomatics Science and Technology,Nanjing Tech University,Nanjing 211800,China)
出处 《工程勘察》 2023年第2期68-72,共5页 Geotechnical Investigation & Surveying
关键词 车载激光点云 强度特征图像 CANNY算子 交通标线 vehicle-borne laser point cloud intensity feature image Canny operator traffic marking
  • 相关文献

参考文献6

二级参考文献45

  • 1刘经南,张小红.利用激光强度信息分类激光扫描测高数据[J].武汉大学学报(信息科学版),2005,30(3):189-193. 被引量:65
  • 2史文中,李必军,李清泉.基于投影点密度的车载激光扫描距离图像分割方法[J].测绘学报,2005,34(2):95-100. 被引量:90
  • 3郭磊,李克强,王建强,连小珉.用于车道识别的分段切换车道模型[J].公路交通科技,2006,23(11):90-94. 被引量:10
  • 4Baltsavias E P. A Comparison Between Photogrammetry and Laser Scanning [J]. ISPRS Journal of Photogrammetry and Remote Sensing, 1999, 54 (1):83-94.
  • 5Dowman I. Integration of LiDAR and IFSAR for Mapping[J]. International Archives of Photogrammetry, Remote Sensing and Spatial Information Sciences, 2004, 34(B2): 90-100.
  • 6Sohn G, Dowman I. Data Fusion of High-Resolution Satellite Imagery and LiDAR Data for Automatic Building Extraction[J]. ISPRS Journal of Photogrammetry & Remote Sensing, 2007,62: 43-63.
  • 7Schwalbe E. 3D Building Model Generation from Airborne Laser Scanner Data Using 2D GIS Data and Orthogonal Point Cloud Projections[C]. ISPRS WG III/3, III/4, V/3 Workshop, Enschede, Netherlands, 2005.
  • 8Csanyi N, Toth C. Combining LiDAR Data with Stereoscopically Extracted Surfaces: Feature Level Fusion[C]. ISPRS Joint Workshop of ISPRS WG I/ 3 and II/2, Portland, Oregon, USA, 2003.
  • 9Sonka M, Hlavac V, Boyle R. Image Processing, Analysis, and Machine vision[M]. USA: International Thomson Publishing, 1998.
  • 10Jensen J R. Introductory Digital Image Processing: a Remote Sensing Perspective (Third Edition) [M]. London: Prentice Hall, 2005.

共引文献80

同被引文献30

引证文献3

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部