期刊文献+

THE REGULARIZED SOLUTION APPROXIMATION OF FORWARD/BACKWARD PROBLEMS FOR A FRACTIONAL PSEUDO-PARABOLIC EQUATION WITH RANDOM NOISE

下载PDF
导出
摘要 This paper deals with the forward and backward problems for the nonlinear fractional pseudo-parabolic equation ut+(-Δ)^(s1)ut+β(-Δ)^(s2)u=F(u,x,t)subject o random Gaussian white noise for initial and final data.Under the suitable assumptions s1,s2andβ,we first show the ill-posedness of mild solutions for forward and backward problems in the sense of Hadamard,which are mainly driven by random noise.Moreover,we propose the Fourier truncation method for stabilizing the above ill-posed problems.We derive an error estimate between the exact solution and its regularized solution in an E‖·‖Hs22norm,and give some numerical examples illustrating the effect of above method.
作者 狄华斐 容伟杰 Huafei DI;Weijie RONG(School of Mathematics and Information Science,Guangzhou University,Guangzhou,510006,China;Key Laboratory of Mathematics and Interdisciplinary Sciences of Guangdong Higher Education Institutes,Guangzhou University,Guangzhou,510006,China)
出处 《Acta Mathematica Scientia》 SCIE CSCD 2023年第1期324-348,共25页 数学物理学报(B辑英文版)
基金 supported by the Natural Science Foundation of China(11801108) the Natural Science Foundation of Guangdong Province(2021A1515010314) the Science and Technology Planning Project of Guangzhou City(202201010111)。
  • 相关文献

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部