摘要
为确保水电机组安全运行及电网稳定,探讨利用水电机组振动信号实现机组故障早期预警,提出了基于集合经验模态分解和标准差水电机组振动信号特征量提取方法,并引入K均值和欧氏距离构建水电机组振动信号异常状态预警指标,量化水电机组振动信号状态异常变化程度,融合多测点状态信息形成水电机组振动故障综合预警指标,实现了水电机组振动故障预警,证明所提特征量和预警方法有效。
To ensure the safe operation of hydropower units and the stability of the power grid, early warning of the unit faults based on vibration signal analysis is explored. An extraction method of the vibration signal characteristics of the units based on ensemble empirical mode decomposition(EEMD) and standard deviation(SD) is proposed. The K-mean and the Euclidean distance are adopted to construct the abnormal state early warning indicator for the vibration signal. It can quantify the degree of the abnormal change of the vibration state of the units, and combine the state information from multiple measuring points to form a comprehensive early warning indicator. Therefore, the early warning of hydropower units based on vibration signal analysis is realized. The effectiveness of the proposed method is verified with practical measurement data.
作者
陈学标
肖远辉
肖富锋
王云鹤
肖志怀
Xuebiao Chen;Yuanhui Xiao;Fufeng Xiao;Yunhe Wang;Zhihuai Xiao(Youxi Basin Branch of Fujian Shuikou Power Generation Group Co.,Ltd.,Youxi 65100,China;School of Power and Mechanical Engineering,Wuhan University,Wuhan 430072,China)
出处
《水电与新能源》
2023年第2期1-5,共5页
Hydropower and New Energy
基金
国网福建省电力有限公司科技项目资助,项目名称“基于信息融合与数据挖掘的水电机组故障预警方法研究与应用”,项目编码(5213S2220002)。
关键词
水电机组预警
EEMD
标准差
K均值聚类
欧氏距离
early warning of hydropower units
EEMD
standard deviation
K-mean clustering
Euclidean distance