摘要
为解决含分布式电源配电网发生故障时无法快速准确获取故障类型、故障相序和故障位置的问题,该文基于深度学习理论和小波变换的思想,提出一种基于融合深度特征的含分布式电源配电网智能故障检测新方法,达到对含分布式电源配电网故障实时识别并准确定位的效果。算法仿真验证结果表明,该方法在故障类型和故障相序识别的准确度方面有一定提高,且对故障位置定位的误差显著降低。
In order to solve the problem that the fault type,fault phase sequence and fault location cannot be obtained quickly and accurately when the distributed power distribution network has faults,based on the deep learning theory and the idea of wavelet transform,this paper proposes a new intelligent fault detection method for the distributed power distribution network based on the integration of deep features,so as to achieve the effect of real-time identification and accurate location of the faults in the distributed power distribution network.The simulation results of the algorithm show that this method has a certain improvement in the accuracy of fault type and fault phase sequence identification,and the error of fault location is significantly reduced.
作者
安天瑜
马煜
高阳
杨博文
魏家和
AN Tianyu;MA Yu;GAO Yang;YANG Bowen;WEI Jiahe(State Grid Northeast Power Dispatch Control Center,Shenyang 110179,China;State Grid Shenyang Electric Power Supply Company Dispatch Control Center,Shenyang 110052,China;Shenyang Institute of Engineering,Shenyang 110015,China)
出处
《中国测试》
CAS
北大核心
2023年第2期58-65,共8页
China Measurement & Test
基金
国家重点研发计划08专项270项目资助(2020YFC0827003)。
关键词
故障检测
故障定位
融合深度特征
小波变换
深度神经网络
fault detection
fault location
integration depth feature
wavelet transform
deep neural network