摘要
针对城市交通场景多目标检测算法检测速度慢,检测精度低等问题,本文提出多阶段提议稀疏区域卷积网络算法(Multi-stage Proposal Sparse Region-based Convolutional Neural Network,MPS R-CNN).算法主要有以下特点:提出了一种多阶段提议框过滤更新机制,提高算法检测精度;提出了一种双向并联特征金字塔网络(Bidirectional Parallel Feature Pyramid Network,BPFPN),增强了模型的特征融合能力;针对城市交通场景目标检测问题引入了CopyPaste数据增强方法和CIoU损失函数.实验结果显示,MPS R-CNN算法在Urban Object Dataset数据集上mAP达到了77%,算法检测速度保持在37 fps,优于目前其他城市交通场景目标检测算法.
Aiming at the slow speed and low accuracy of multi-object detection algorithms in urban traffic scenes,this paper proposes a multi-stage proposal sparse region-based convolutional neural network algorithm(MPS R-CNN). The algorithm mainly has the following characteristics: a multi-stage proposal box filtering update mechanism is proposed to improve the detection accuracy of the algorithm;a bidirectional parallel feature pyramid network(BPFPN) is proposed to enhance the model feature fusion capability;for the problem of object detection in urban traffic scenes, the Copy-Paste data augmentation method and CIoU loss function are introduced. The experimental results show that the MPS R-CNN algorithm achieves 77% mAP on the urban object dataset, and the algorithm detection speed remains at 37fps, which is better than other current urban traffic object detection algorithms.
作者
柳长源
张玉亮
毕晓君
LIU Chang-yuan;ZHANG Yu-liang;BI Xiao-jun(College of Measurement and Control Technology and Communication Engineering,Harbin University of Science and Technology,Harbin,Heilongjiang 150080,China;School of Information Engineering,Minzu University of China,Beijing 100081,China)
出处
《电子学报》
EI
CAS
CSCD
北大核心
2023年第1期26-31,共6页
Acta Electronica Sinica
基金
国家自然科学基金(No.51779050)
黑龙江省自然科学基金(No.F2016022)。
关键词
目标检测
城市交通
提议过滤
特征金字塔
数据增强
object detection
urban traffic
proposal filtering
feature pyramid
data augmentation