摘要
雾图像结构信息弱化、边缘细节信息丢失,严重影响其在高水平视觉任务的使用.现有大部分去雾方法对图像细节信息的恢复并不理想,影响了图像去雾的整体效果.为此,本文提出一种双注意力引导的细节和结构信息融合去雾网络.该网络主要由空间-通道双注意力联合模块、细节和结构信息融合模块以及多尺度特征重建模块组成.其中,空间-通道双注意力联合模块通过联合空间和通道两个维度的注意力进行特征提取,实现雾图像中细节和结构信息的增强;细节和结构信息融合模块将结构信息和边缘细节信息融合为注意力权重和逆向注意力权重,以进一步增强这两种信息;多尺度特征重建模块将提取到的特征重建为清晰图像.实验结果表明,本文方法的去雾效果在定量评价和视觉效果上均优于对比方法.
Haze weakens the structural information of an image and makes the edge information lost, which negatively affects the performance of high-level vision tasks. The details recovered by most existing dehazing methods are unsatisfactory, affecting the overall effect of image dehazing. To this end, this paper proposes a dual-attention guided detail and structure information fusion network composed of spatial-channel dual attention joint module, detail and structure information fusion module, and multi-scale feature reconstruction module. The spatial-channel dual attention joint module performs feature extraction by combining spatial attention and channel attention to enhance details and structural information in the hazy image. The detail and structure information fusion module fuses structure and edge into attention weights and inverse attention weights to further enhance both information. The multi-scale feature reconstruction module reconstructs the extracted features into a clear image. The experiment results show that the dehazing effect of the proposed method is superior to that of the compared methods in both quantitative evaluation and visual effect.
作者
高继蕊
李华锋
张亚飞
谢明鸿
李凡
GAO Ji-rui;LI Hua-feng;ZHANG Ya-fei;XIE Ming-hong;LI Fan(Faculty of Information Engineering and Automation,Kunming University of Science and Technology,Kunming,Yunnan 650500,China;Yunnan Key Laboratory of Artificial Intelligence,Kunming,Yunnan 650500,China)
出处
《电子学报》
EI
CAS
CSCD
北大核心
2023年第1期160-171,共12页
Acta Electronica Sinica
基金
国家自然科学基金(No.62161015)。
关键词
图像去雾
图像恢复
信息融合
注意力
特征重建
image dehazing
image restoration
information fusion
attention
feature reconstruction