期刊文献+

亚高斯测量映射的限制等距性质

Restricted Isometric Property of Sub-Gaussian Measurement Mapping
下载PDF
导出
摘要 信号恢复的充分条件是测量矩阵须满足限制等距性质,类比可知低秩矩阵恢复的充分条件是需要一个线性映射满足限制等距性质。线性映射与矩阵可以一一对应,因此本文通过一个与亚高斯测量映射一一对应的亚高斯矩阵,以建立亚高斯测量映射的限制等距性质,并得出秩最多为s的低秩矩阵可以进行稀疏恢复的结论。 The sufficient condition of vector sparse recovery is that the measurement matrix needs to meet the restricted isometric property.By analogy,it can be seen that the sufficient condition of low rank matrix recovery is that a linear mapping needs to meet the restricted isometric property.Linear mapping and matrix can correspond one-to-one.Therefore,this paper establishes the restricted isometric property of Sub-Gaussian measurement mapping through a Sub-Gaussian matrix corresponding to Sub-Gaussian measurement mapping one-to-one,and obtains that the low rank matrix with the most rank can be sparsely restored.
作者 郑珂 宋儒瑛 ZHENG Ke;SONG Ruying(Department of mathematics,Taiyuan Normal University,Jinzhong 030619,China)
出处 《中央民族大学学报(自然科学版)》 2023年第1期5-9,共5页 Journal of Minzu University of China(Natural Sciences Edition)
关键词 压缩感知 亚高斯测量映射 限制等距性质 低秩矩阵恢复 compressed sensing Sub-Gaussian measurement mapping restricted isometric property low-rank matrix recovery
  • 相关文献

参考文献2

二级参考文献35

  • 1Argyriou A, Micchelli C, Pontil M. Convex multi-task feature learning. Machine Learning, 2008, 73:243-272.
  • 2Beck C, Andrea R. Computational study and comparisons of LFT reducibility methods. In: Proceedings of the American Control Conference. Michigan: American Automatic Control Council, 1998, 1013- 1017.
  • 3Cai J F, Cand's E J, Shen Z W. A singular value thresholding algorithm for matrix completion. SIAM J Optim, 2010, 20:1956-1982.
  • 4Cai T T, Wang L, Xu G W. Shifting inequality and recovery of sparse signals. IEEE Trans Signal Process, 2010, 58: 1300-1308.
  • 5Cai T T, Wang L, Xu G W. New bounds for restricted isometry constants. IEEE Trans Inform Theory, 2010, 56: 4388-4394.
  • 6Cand's E J. Compressive sampling. In: Proceedings of International Congress of Mathematicians, vol. 3. Madrid: European Mathematical Society Publishing House, 2006, 1433-1452.
  • 7Cand's E J. The restricted isometry property and its implications for compressed sensing. C R Acad Sci Paris Ser 1, 2008, 346:589 592.
  • 8Cand's E J, Plan Y. Tight oracle bounds for low-rank recovery from a minimal number of random measurements. IEEE Trans Inform Theory, 2009, 57:2342- 2359.
  • 9Cand's E J, Recht B. Exact matrix completion via convex optimization. Found Comput Math, 2008, 9:717-772.
  • 10Cand's E J, Tao T. Decoding by linear programming. IEEE Trans Inform Theory, 2005, 51:4203 -4215.

共引文献5

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部