摘要
本文研究非线性分数微分方程边值问题{(cD0,u)(t)+f(t,u(t))=0,t∈(0,1),u(0)=u^(n)(0)=u^(m)(0)=0,u(1)=λ∫10u(s)ds,{其中,α∈(3,4]是该区间上任一实数,^(c)Da为标准的Caputo分数求导结果且f:[0,1]×[0,+∞)→[0,+∞)连续。依托锥上的Guo-Krasnoselskill不动点定理,研究上述边值问题中正解的存在性。
In this paper,we consider the following boundary value problem of nonlinear fractional differential equation{(cD0,u)(t)+f(t,u(t))=0,t∈(0,1),u(0)=u^(n)(0)=u^(m)(0)=0,u(1)=λ∫10u(s)ds,whereα∈(3,4]is a real number,^(c)Dadenotes the standard Caputo fractional derivative,and f:[0,1]×[0,+∞)→[0,+∞)is continuous.By using the well-known Guo-Krasnoselskill fixed point theorem on cones,we obtain the existence of one positive solution for the above problem.
作者
岳俊瑞
白庆月
YUE Junrui;BAI Qingyue(Shanxi Technology and Business College,Taiyuan 030000,China)
出处
《中央民族大学学报(自然科学版)》
2023年第1期10-15,共6页
Journal of Minzu University of China(Natural Sciences Edition)
基金
山西省教育科学“十四五”规划课题(GH-21458)
山西省教育科学“十三五”规划课题(HLW-20139)。
关键词
分数微分方程
边值问题
正解
存在性
fractional differential equation
boundary value problem
positive solution
existence