期刊文献+

基于卷积神经网络的喉镜图像解剖部位自动识别的研究 被引量:3

Automatic anatomical site recognition of laryngoscopic images using convolutional neural network
原文传递
导出
摘要 目的:探讨基于卷积神经网络(CNN)构建的人工智能(AI)质控系统对电子喉镜检查中的20个解剖站点的自动识别和分类情况。方法:回顾性收集中国医学科学院肿瘤医院内镜科2018年1月至12月电子喉镜检查的图像资料,采用Inception-ResNet-V2+SENet模型训练CNN。使用14 000张电子喉镜图像作为训练集,将这些图像分类到包含整个头颈部的20个具体解剖站点,并通过2000张喉镜图像和10个喉镜录像测试其性能。结果:训练后的CNN模型对每张喉镜图片识别的平均时间为(20.59±1.55) ms,对喉镜图像中20个解剖站点识别的总准确率为97.75%(1955/2000),平均敏感性、特异性、阳性预测值和阴性预测值分别为100%、99.88%、97.76%和99.88%。该模型对喉镜录像中20个解剖站点识别的准确率≥99%。结论:基于CNN的AI系统可对电子喉镜图片及录像中的解剖部位进行准确、快速的分类识别,可用于喉镜检查中照片文档的质量控制,在监督喉镜检查质量方面表现出应用潜力。 Objective: To explore the automatic recognition and classification of 20 anatomical sites in laryngoscopy by an artificial intelligence(AI) quality control system using convolutional neural network(CNN). Methods: Laryngoscopic image data archived from laryngoscopy examinations at the Department of Endoscopy, Cancer Hospital, Chinese Academy of Medical Sciences from January to December 2018 were collected retrospectively, and a CNN model was constructed using Inception-ResNet-V2+SENet. Using 14000 electronic laryngoscope images as the training set, these images were classified into 20 specific anatomical sites including the whole head and neck, and their performance was tested by 2000 laryngoscope images and 10 laryngoscope videos. Results: The average time of the trained CNN model for recognition of each laryngoscopic image was(20.59 ± 1.55) ms, and the overall accuracy of recognition of 20 anatomical sites in laryngoscopic images was 97.75%(1955/2000), with average sensitivity, specificity, positive predictive value, and negative predictive value of 100%, 99.88%, 97.76%, and 99.88%, respectively. The model had an accuracy of ≥ 99% for the identification of 20 anatomical sites in laryngoscopic videos. Conclusion: This study confirms that the CNN-based AI system can perform accurate and fast classification and identification of anatomical sites in laryngoscopic pictures and videos, which can be used for quality control of photo documentation in laryngoscopy and shows potential application in monitoring the performance of laryngoscopy.
作者 王美玲 朱继庆 李莹 铁成炜 王士旭 张玮 王贵齐 倪晓光 WANG Meiling;ZHU Jiqing;LI Ying;TIE Chengwei;WANG Shixu;ZHANG Wei;WANG Guiqi;NI Xiaoguang(Department of Endoscopy,National Cancer Center,National Clinical Research Center for Cancer,Cancer Hospital&Shenzhen Hospital,Chinese Academy of Medical Sciences and Peking Union Medical College,Shenzhen,518116,China;Department of Endoscopy,National Cancer Center,National Clinical Research Center for Cancer,Cancer Hospital,Chinese Academy of Medical Sciences and Peking Union Medical College,Beijing)
出处 《临床耳鼻咽喉头颈外科杂志》 CAS CSCD 北大核心 2023年第1期6-12,共7页 Journal of Clinical Otorhinolaryngology Head And Neck Surgery
基金 深圳市“医疗卫生三名工程”项目(No:SZSM201911008) 中国癌症基金会北京希望马拉松专项基金(No:LC2021A04)。
关键词 卷积神经网络 人工智能 喉镜检查 解剖分类 质量控制 convolutional neural network artificial intelligence laryngoscopy anatomical classification quality control
  • 相关文献

参考文献5

二级参考文献12

共引文献27

同被引文献6

引证文献3

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部