摘要
针对目前家用电器电机采用人工听诊方式判断电机故障的现状,设计基于深度学习的电机故障诊断方法,旨在实现电机生产线的自动化与智能化。文章设计一个二分支的一维卷积神经网络,并在该基础上优化混合切片二分支卷积神经网络模型。经实验验证,该网络使用后,训练集准确率能达到99.67%,测试集准确率能达到98%,采用该方法进行电机故障噪声诊断准确率高且实用性好。
Aiming at the current status quo of using manual auscultation to determine motor faults in household electrical appliances motors,a deep learning-based motor fault diagnosis method is designed,aiming to realize automation and intelligence of motor production line.The article designs a two-branch one-dimensional convolutional neural network,and optimizes the hybrid sliced two-branch Convolutional Neural Network model on that basis.After experimental verification,the accuracy of the training set can reach 99.67%and the accuracy of the test set can reach 98%after the use of this network,and the method is used for motor fault noise diagnosis with high accuracy and good practicality.
作者
张慧子
ZHANG Huizi(College of art,Suzhou University,Suzhou Jiangsu 215000,China)
出处
《信息与电脑》
2022年第22期58-61,共4页
Information & Computer