期刊文献+

基于深度学习的家用电器电机故障诊断方法研究 被引量:2

Research on Fault Diagnosis Method of Electrical Motor Noise for Household Appliances Based on Deep Learning
下载PDF
导出
摘要 针对目前家用电器电机采用人工听诊方式判断电机故障的现状,设计基于深度学习的电机故障诊断方法,旨在实现电机生产线的自动化与智能化。文章设计一个二分支的一维卷积神经网络,并在该基础上优化混合切片二分支卷积神经网络模型。经实验验证,该网络使用后,训练集准确率能达到99.67%,测试集准确率能达到98%,采用该方法进行电机故障噪声诊断准确率高且实用性好。 Aiming at the current status quo of using manual auscultation to determine motor faults in household electrical appliances motors,a deep learning-based motor fault diagnosis method is designed,aiming to realize automation and intelligence of motor production line.The article designs a two-branch one-dimensional convolutional neural network,and optimizes the hybrid sliced two-branch Convolutional Neural Network model on that basis.After experimental verification,the accuracy of the training set can reach 99.67%and the accuracy of the test set can reach 98%after the use of this network,and the method is used for motor fault noise diagnosis with high accuracy and good practicality.
作者 张慧子 ZHANG Huizi(College of art,Suzhou University,Suzhou Jiangsu 215000,China)
出处 《信息与电脑》 2022年第22期58-61,共4页 Information & Computer
关键词 电机 故障噪声诊断 深度学习 卷积神经网络(CNN) motor fault noise diagnosis deep learning Convolutional Neural Network(CNN)
  • 相关文献

参考文献9

二级参考文献87

共引文献156

同被引文献16

引证文献2

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部