摘要
目前,随着高校信息技术的发展,学校记录了大量的学生日常行为数据,特别是图书馆系统中累积了许多图书流通数据。由于传统的统计分析方法对高校图书借阅行为分析精确度较低,导致高校图书馆资源利用率较低,且无法找出背后深层次的原因。为了提高高校图书馆资源利用率和服务价值,通过数据挖掘技术对图书馆系统数据进行聚类分析,为智慧图书馆建设提供客观的决策依据。
At present,with the development of information technology in colleges and universities,students’daily behavior data will be recorded in large numbers,especially many book circulation data accumulated in the library system.Due to the disadvantage of low accurate analysis of university book borrowing behavior by traditional statistical analysis methods,the utilization rate of university library resources is low,and the underlying reasons cannot be found.In order to improve the utilization rate and service value of university library resources,the clustering and analysis of library system data through data mining technology can provide an objective decision-making basis for the construction of intelligent library.
作者
梅轶骅
邓钧元
李智
MEI Yihua;DENG Junyuan;LI Zhi(Guilin Medical University,Guilin Guangxi 541000,China)
出处
《信息与电脑》
2022年第22期206-208,共3页
Information & Computer
基金
2021年度广西高校中青年教师科研基础能力提升项目“基于数据挖掘技术的贫困生多维信息识别模型的研究”(项目编号:2021KY0506)。