期刊文献+

基于深度学习的3D分子生成模型研究进展 被引量:1

Advances in deep learning-based 3D molecular generative models
原文传递
导出
摘要 分子生成作为药物设计领域的一个基本问题,旨在以低成本和高效率的方式设计出具有理想生物活性和药代动力学属性的新颖分子.近年来深度生成模型在药物设计中得到了广泛应用,大量的模型结构和优化策略得到探索,其中大多是生成一维或二维的分子结构.随着深度学习在处理几何图形数据上的快速发展,面向3D分子的生成模型被提出,因其在直接生成3D分子构象和基于结构的药物设计上的优势和潜力而越来越受到关注.本文对近年来国内外学者在3D分子生成上取得的成果进行了系统的总结和分析,从3D分子生成算法输入的角度将其分为基于隐变量的生成、基于2D分子图的生成和基于3D分子构象的生成;接着从3D分子生成算法输出的角度将其分类为定向生成和非定向生成;随后总结了相关生成模型在主要的公开数据集上的性能,以探究各种生成模型的优缺点;最后对未来可能的研究方向进行了展望. Molecular generation,aiming at designing novel molecules with desired properties such as biological activity and drug metabolism and pharmacokinetic(DMPK)properties in a low-cost and high-efficient manner,is a fundamental problem in drug discovery.Recently,deep generative models have been widely used in drug discovery,along with numerous model architectures and optimization strategies being explored,most of which are developed to generate onedimensional or two-dimensional molecular structures.Inspired by the rapid development of deep learning in processing geometric graph data,3D generative models for molecular generation have also been proposed,gaining attention for their advantages and potential on direct 3D molecular conformation generation and structure-based drug discovery.This survey has offered a systematic summarization of existing research achievements of the domestic and foreign researchers in recent years in the aspects of 3D molecular generation.According to the input of 3D molecular generation algorithms,it is divided into latent variable-based generation,2D graph-based generation and 3D geometry-based generation.Then,according to the output of 3D molecular generation algorithms,it is divided into goal-directed generation and non-goal-directed generation.Furthermore,the performance of different generative models on main public datasets is summarized,which proves the advantages and disadvantages of the various models.Finally,some promising research directions are proposed.
作者 姚少伦 宋杰 冯尊磊 贾凌翔 钟子鹏 宋明黎 Shaolun Yao;Jie Song;Zunlei Feng;Lingxiang Jia;Zipeng Zhong;Mingli Song(Collaborative Innovation Center of Artificial Inteligence by MOE and Zhejiang Provincial Government,Zhejiang University,Hangzhou 310007,China;Collegeof Sofiware Technology,Zhejiang University,Ningbo 315020,China;College of Computer Science and Technology,Zhejiang University,Hangzhou 310027,China)
出处 《中国科学:化学》 CAS CSCD 北大核心 2023年第2期174-195,共22页 SCIENTIA SINICA Chimica
基金 浙江省基础公益项目(编号:LGG22F020007) 浙江大学上海高等研究院繁星基金(编号:SN-ZJU-SIAS-001) 中央高校基本业务费(编号:2021FZZX001-23)。
关键词 3D分子生成 等变图神经网络 深度生成模型 定向生成 非定向生成 3D molecular generation equivariant graph neural networks deep generative models goal-directed generation non-goal-directed generation
  • 相关文献

参考文献2

共引文献9

同被引文献14

引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部