期刊文献+

(非)弱正则p值bent函数的间接构造

Secondary constructions of p-ary(non-)weakly regular bent functions
原文传递
导出
摘要 Bent函数在对称密码、序列设计、组合理论和编码理论等领域都有着重要的应用.基于已有的非直和与半直和构造研究方法,本文给出一类bent函数的间接构造.利用所得构造,通过选取合适的初始(向量)bent函数及其组合构造出高代数次数的(非)弱正则bent函数.更准确地,本文借助向量M-M(Maiorana-McFarland)类和PS(partial spread)类bent函数,给出了一些(弱)正则bent函数.特别地,给出了这些bent函数的对偶函数的显式表达式.进一步地,应用向量完美非线性(perfect nonlinear,PN)函数,生成了无限类非弱正则bent函数. Bent functions can be used in many areas,such as symmetric cryptography,sequence design,and association schemes.In this paper,a generic secondary construction of bent functions from indirect sum and semidirect sum methods is presented.Our method can be used to construct high algebraic degree(non-)weakly regular bent functions by employing suitable initial(vectorial)bent functions or their combinations.More precisely,we present some classes of(weakly)regular bent functions by using vectorial M-M(Maiorana-Mc Farland)and PS(partial spread)bent functions,respectively.In particular,the explicit expressions for the dual of these(weakly)regular bent functions are obtained.Based on the vectorial perfect nonlinear(PN)functions,infinite families of non-weakly regular bent functions can also be produced.
作者 杨志耀 柯品惠 陈智雄 张胜元 Zhiyao Yang;Pinhui Ke;Zhixiong Chen;Shengyuan Zhang
出处 《中国科学:数学》 CSCD 北大核心 2023年第2期381-394,共14页 Scientia Sinica:Mathematica
基金 国家自然科学基金(批准号:61772292和61772476) 福建省自然科学基金(批准号:2019J01273和2020J01905)资助项目。
关键词 (向量)bent函数 (非)弱正则bent函数 非直和 半直和 (vectorial)bent function (non-)weakly regular bent function indirect sum semi-direct sum
  • 相关文献

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部