期刊文献+

基于分组拍卖的集群机器人启发式图形构造算法

Heuristic shape formation algorithm in swarm robots based on group auction
原文传递
导出
摘要 集群机器人的图形构造问题是指通过控制集群机器人的运动趋使其形成一个特定的图形.集群机器人中的图形构造问题通常可以分解为两个子问题:机器人与目标点之间的任务分配以及机器人与目标点之间的路径规划.根据集群机器人图形构造问题规模大、易拥堵、碰撞的特点,提出了一种集中优化、分组拍卖以及分布式交互相结合的OGADI(optimized grouping auction and distributed interaction)方法,以缩短图形构造的完成时间.将OGADI算法与最短路径集诱导顶点排序算法对比,结果表明,在集群机器人规模分别为500, 1000, 1300下, OGADI算法图形构造任务平均完成时间分别缩短了16.1%, 13.6%, 14.4%,仿真验证了OGADI算法的可行性和有效性. The shape formation refers to forming a special shape by controlling the movement of the swarm robots. The problem of shape formation in swarm robots can often be reduced to two sub-problems: the task allocation and the path planning between the robots and the targets. According to the characteristics of large-scale, easy congestion and collision in the shape formation problem, the optimized grouping auction and distributed interaction(OGADI) algorithm is proposed to shorten the completion time of the task.The OGADI algorithm is compared with the shortest path set induced vertex ordering algorithm. The results show that the average completion time of the OGADI algorithm on a scale of 500, 1000, 1300 swarm robots are shortened by 16.1%, 13.6%, and 14.4%,respectively. Some simulation results verify the effectiveness of the proposed method in this paper.
作者 曲韵 辛斌 王晴 张钧溪 郭苗 QU Yun;XIN Bin;WANG Qing;ZHANG JunXi;GUO Miao(School of Automation,Beijing Institute of Technology,Beiijing 100081,China;State Key Laboratory of Intelligent Control and Decision of Complex Systems,Beijing 100081,China;Beijing Advanced Innovation Center for Intelligent Robots and Systems,Beijing 100081,China)
出处 《中国科学:技术科学》 EI CSCD 北大核心 2023年第2期210-220,共11页 Scientia Sinica(Technologica)
基金 国家自然科学基金青年科学基金项目(批准号:62003044)资助。
关键词 集群机器人 图形构造 拍卖 分布式交互 优化 swarm robots shape formation auction distributed interaction optimization
  • 相关文献

参考文献4

二级参考文献41

  • 1DUAN HaiBin 1 ,SHAO Shan 2 ,SU BingWei 3 &ZHANG Lei 41 State Key Laboratory of Science and Technology on Holistic Flight Control,School of Automation Science and Electrical Engineering, Beijing University of Aeronautics and Astronautics,Beijing 100191,China,2 Flight Control Department,Shenyang Aircraft Design and Research Institute,Shenyang 110035,China,3 Beijing Institute of Near Space Vehicle’s System Engineering,Beijing 100076,China,4Integration and Project Section,Air Force Equipment Academy,Beijing 100085,China.New development thoughts on the bio-inspired intelligence based control for unmanned combat aerial vehicle[J].Science China(Technological Sciences),2010,53(8):2025-2031. 被引量:33
  • 2程代展,陈翰馥.从群集到社会行为控制[J].科技导报,2004,22(8):4-7. 被引量:32
  • 3潘峰,陈杰,甘明刚,蔡涛,涂序彦.粒子群优化算法模型分析[J].自动化学报,2006,32(3):368-377. 被引量:67
  • 4Kennedy J,Eberhart R.Particle swarm optimization.In:Proceedings of IEEE International Conference on Neural Networks.Perth,Australia:IEEE,1995.1942-1948
  • 5Riccardo P.Analysis of the Publications on the Applications of Particle Swarm Optimisation.Colchester:Hindawi Publishing Corp,2008.1-10
  • 6Shi Y,Eberhart R.Parameter selection in particle swarm optimization.In:Proceedings of the 7th International Conference on Evolutionary Programming.London,UK:Springer,1998.591-600
  • 7van den Bergh F.An Analysis of Particle Swarm Optimizers[Ph.D.dissertation].University of Pretoria,South Africa,2001
  • 8van den Bergh F,Engelbrecht A P.A study of particle swarm optimization particle trajectories.Information Sciences,2006,176(8):937-971
  • 9Clerc M,Kennedy J.The particle swarm:explosion,stability and convergence in a multi-dimensional complex space.IEEE Transactions on Evolutionary Computation,2002,8(1):58-73
  • 10Trelea I C.The particle swarm optimization algorithm:convergence analysis and parameter selection,Information Processing Letters,2003,85(6):317-325

共引文献88

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部