期刊文献+

三维网格动态细化技术在切削仿真中的应用 被引量:3

Application of 3D Mesh Dynamic Refinement Technology in Cutting Simulation
下载PDF
导出
摘要 为解决切削加工有限元仿真模型求解速度与精度难以平衡的问题,提出了一种适用于三维有限元模型的网格动态细化算法。该算法的主要功能包括网格细化区域判断、网格细化以及新旧网格物理场传递。采用Python语言对Abaqus软件进行二次开发,将该算法应用于Ti2AlNb钛合金车削加工仿真之中,并最终通过实验验证了仿真模型的准确性。与采用局部网格细化的仿真模型计算结果对比,采用网格动态细化技术的仿真模型求解切削力误差增加了7.3%,求解最大应力误差增加0.2%,求解速度提升174.2%。实现了在保证仿真计算精度的基础上,有效提高运算速度。 Since it is difficult to balance the speed and accuracy of the finite element simulation model of cutting processing,a dynamic mesh refinement algorithm for 3D finite element model is proposed.The functions of the algorithm include mesh refinement area judgment,mesh refinement and transfer of physics fields between new and old meshes.The algorithm is applied to the turning simulation of Ti2AlNb with the secondary development of Abaqus using Python,and the accuracy of the simulation model is verified through experiments.Compared with the simulation results of the local mesh refinement,the simulation using dynamic mesh refinement increases 7.3%in cutting force solution error and increases 0.2%in maximum stress solution error,with an increased 174.2%solution speed.The simulation operation speed is effectively improved while ensuring the calculation accuracy.
作者 杨振 王洋 王禹封 苏宏华 YANG Zhen;WANG Yang;WANG Yufeng;SU Honghua(College of Mechanical&Electrical Engineering,Nanjing University of Aeronautics&Astronautics,Nanjing 210016,China)
出处 《南京航空航天大学学报》 CAS CSCD 北大核心 2023年第1期80-88,共9页 Journal of Nanjing University of Aeronautics & Astronautics
关键词 三维网格动态细化 物理场传递 金属切削 切削仿真 3D mesh dynamic refinement physical field transfer metal cutting cutting simulation
  • 相关文献

参考文献1

二级参考文献12

  • 1Benzley S E,Perry E,Merkley K,et al.A comparison of all-hexahedral and all-tetrahedral finite element meshes for elastic and elasto-plastic analysis[C]//Proceedings of the 4th International Meshing Roundtable,Albuquerque,1995:179-191.
  • 2Tchon K F,Khachan M,Guibault F,et al.Three-dimensional anisotropic geometric metrics based on local domain curvature and thickness[J].Computer-Aided Design,2005,37(2):173-187.
  • 3Blacker T.Automated conformal hexahedral meshing constraints,challenges and opportunities[J].Engineering with Computers,2001,17(3):201-210.
  • 4Wada Y,Okuda H.Effective adaptation technique for hexahedral mesh[J].Concurrency and Computation:Practice and Experience,2002,14(6/7):451-463.
  • 5Zhang H M,Zhao G Q,Ma X W.Adaptive generation of hexahedral element mesh using an improved grid-based method[J].Computer-Aided Design,2007,39(10):914-928.
  • 6Schneiders R.A grid-based algorithm for the generation of hexahedral element meshes[J].Engineering with Computers,1996,12(3/4):168-177.
  • 7Su Y,Lee K H,Kumar A S.Automatic hexahedral mesh generation for multi-domain composite models using a hybrid projective grid-based method[J].Computer-Aided Design,2004,36(3):203-215.
  • 8Zhang Y J,Bajaj C.Adaptive and quality quadrilateral/hexahedral meshing from volumetric data[J].Computer Methods in Applied Mechanics and Engineering,2006,195(9/12):942-960.
  • 9Ito Y,Shih A M,Soni B K.Octree-based reasonable-quality hexahedral mesh generation using a new set of refinement templates[J].International Journal for Numerical Methods in Engineering,2008,77(13):1809-1833.
  • 10Schneiders R.Refining quadrilateral and hexahedral element meshes[C]//Proceedings of the 5th International Conference on Numerical Grid Generation in Computational Field Simulations,Starkville,1996:679-688.

共引文献5

同被引文献10

引证文献3

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部