期刊文献+

基于微波无线传能与全向扫描天线的SSPS——OMEGA-2.0光机电集成设计 被引量:1

Optomechatronics OMEGA design project of SSPS with MWPT and omnidirectional scanning antenna
原文传递
导出
摘要 针对欧米伽(OMEGA)空间太阳能电站设计方案存在的困难与问题,本文提出了一种新的称为OMEGA-2.0的光机电集成方案.首先,利用球冠接收平行太阳光能(SE),并将其汇聚于陀螺状的线馈源阵上,经光电转换部件生成直流电(DC)后,进而通过结构功能件将DC送到置于球冠聚光镜外部顶端的微波发射天线,这不仅可大大简化设计,且可破解对球面薄膜材料的关于太阳光半透射半反射和对微波全透明的难题,还可消除因发射天线在聚光镜内部引起的光线遮挡问题.然后,通过球冠聚光镜的结构功能件来输送高压巨功率直流电,可突破需经过电刷进行高压巨功率直流电传输的可靠性低的关键技术.其次,将空间电推进技术用于聚光镜在轨姿态微调,可攻克对线馈源运动进行在轨实时精密控制的难点.再者,在聚光镜背面、线馈源根部设计仿生的高效轻质辐射散热器,并进行拓扑与形状、尺寸优化设计,可进一步大幅度缓解散热压力.最后,引入全向扫描微波天线,可保证系统沿空间轨道运行时微波波束实时指向接收天线,从而避免需对发射天线进行实时大惯量指向控制的问题. Owing to the difficulties and shortcomings of the OMEGA design of the space solar power station,this study proposes an optomechatronics OMEGA design project.First,a spherical crown(instead of the whole sphere) is utilized to collect the parallel sunlight,which is focused on the top-shaped line feed.The DC energy is sent to the transmission antenna.Thus,the problem of designing a special membrane,which is semi-transmitting and semi-reflecting for the sunlight and meanwhile transparent for the microwave,could be avoided.Then,the electric brush with ultra-large DC power is replaced with the traditional DC transfer method to overcome the critical problem of lower reliability.Next,using the omnidirectional scanning antenna,an electric propulsion technique is introduced to adjust the crown pose to replace the control system of the line-feed moving.Afterward,employing a bionic butterflying technology with topology optimization to radiate the massive heat to the cold space resulted in an innovative cooler,checking for both requirements of a bigger radiation size and an ultra-low selfweight,simultaneously.
作者 段宝岩 DUAN BaoYan(Research Institute on Mechatronics,Xidian University,Xi’an 710071,China)
出处 《中国科学:技术科学》 EI CSCD 北大核心 2023年第1期139-144,共6页 Scientia Sinica(Technologica)
基金 国家自然科学基金重点项目(批准号:U1637207)资助。
关键词 OMEGA-2.0光机电集成设计 电推进位姿调控 仿生辐射散热 全向扫描微波阵列天线 optomechatronics OMEGA design project pose control with electrical propulsion bionic butterflying cooler omnidirectional scanning microwave antenna
  • 相关文献

参考文献4

二级参考文献29

  • 1URSI. White Paper on Solar Power Satellite (SPS) systems and report of the URSI inter-commission working group on SPS [R]. URSI Inter commission Working Group on SPS, 2007: 23.
  • 2MANKINS J C. New directions for space solar power [J]. Acta Astronautica, 2009, 65: 146-156.
  • 3MANKINS J C. The case for Space Solar Power EM~. Virginia: Virginia Edition Publishing, 2014.
  • 4MANKINS J C. SPS-ALPHA: The first practical Solar Power Satellite via arbitrarily large phased array LN-J. Artemis Innovation Management Solutions LLC, 2012: 18.
  • 5HUMPHRYS MARK. The sigmoid function [EB/OL]. http://computing, dcu. ie/- humphrys/Notes/ Neural/sigmoid. html.
  • 6GASIK MICHAEL, BILOTSKY YEVGEN. Optimisation of functionally gradated material thermoelectric cooler for the solar space power system [J]. Applied Thermal Engineering, 2014, 66(1-2): 528-533.
  • 7COMMITTEE FOR THE ASSESSMENT OF NASXS SPACE SOLAR POWER INVESTMENT STRATEGY. Laying the foundation for Space Solar Power: an assessment of NASA~s Space Solar Power investment strategy [R]. National Academy Press, 2001: 36.
  • 8MANKINS J C. A technical overview of the "Suntower" Solar Power Satellite concept [J]. Aeta Astronautica, 2002, 50(6): 369-377.
  • 9NATIONAL SECURITY SPACE OFFICE INTERIM ASSESSMENT. Space based Solar Power: as an opportunity for strategic security [R]. National Security Space Office, 2007: 9.
  • 10Peter E G. Power from the Sun: its future [J]. Science, 1968, 162 : 867 -886.

共引文献69

同被引文献17

引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部