期刊文献+

故障机理与领域自适应混合驱动的机械故障智能迁移诊断 被引量:3

Intelligent migration diagnosis of mechanical faults driven by hybrid fault mechanism and domain adaptation
原文传递
导出
摘要 航空发动机的健康稳定对于保障飞行器的安全运行具有重要的作用,针对各台发动机建立具备高准确率的智能诊断模型是飞行器稳定运行的关键。现有故障诊断方法在具备故障数据的条件下能取得较好效果,但实际应用中往往因仅含正常数据,无法实现诊断模型的构建。针对该问题,提出一种故障机理与领域自适应混合驱动的机械故障智能迁移诊断方法,该方法首先依据故障机理和源域数据建立旋转机械故障虚拟样本生成模型,再采用目标域正常数据实现生成模型对目标域的自适应,最后通过虚拟样本训练得到目标域故障诊断模型。采用标准数据集和实验室轴承数据对提出方法进行验证,结果表明,提出方法对不同型号轴承诊断时取得88.61%的平均准确率,相比对比方法高41.22%。 The health and stability of aircraft engines play an important role in ensuring the safe operation of aircraft,and the establishment of intelligent diagnostic models with high accuracy for different engines is the key to the stable operation of aircraft.The existing fault diagnosis methods can achieve good results when fault data are available,but the actual application cannot always realize the construction of the diagnosis model because it only contains normal data.To address this problem,a hybrid fault mechanism and domain adaptive driven intelligent migration diagnosis method for mechanical faults is proposed.This method firstly establishes a virtual sample generation model for rotating mechanical faults based on the fault mechanism and source domain data,then the normal data of the target domain is used to realize the adaption of the generation model to the target domain,and finally,the target domain fault diagnosis model is obtained by virtual sample training.The proposed method is validated using standard data sets and laboratory bearing data,and the results show that the proposed method achieves an average accuracy of 88.61% when diagnosing different types of bearings,which is 41.22% higher compared with the comparison method.
作者 于功也 蔡伟东 胡明辉 刘文才 马波 YU Gongye;CAI Weidong;HU Minghui;LIU Wencai;MA Bo(Key Laboratory of Engine Health Monitoring-Control and Networking(Ministry of Education),Beijing University of Chemical Technology,Beijing 100029,China;Beijing Key Laboratory of Health Monitoring and Self-recovery for High-end Mechanical Equipment,Beijing University of Chemical Technology,Beijing 100029,China;Institute of Engineering Thermophysics,Chinese Academy of Sciences,Beijing 100190,China;CNPC Research Institute of Safety&Environment Technology,Beijing 102249,China)
出处 《航空学报》 EI CAS CSCD 北大核心 2023年第2期315-326,共12页 Acta Aeronautica et Astronautica Sinica
基金 国家自然科学基金(11802153)。
关键词 故障诊断 故障机理 个性化模型 迁移学习 领域自适应 fault diagnosis mechanism model personalized model transfer learning domain adaptation
  • 相关文献

参考文献15

二级参考文献121

  • 1杨惠珍,康凤举,阎晋屯.一种基于AHP的仿真可信度评估方法研究[J].系统仿真学报,2006,18(z2):52-54. 被引量:17
  • 2王晖,潘高田,臧兴震,贾锐锋.正态分布的小样本数据的相容性检验理论和方法[J].数学的实践与认识,2005,35(3):131-137. 被引量:12
  • 3隆昌菊.伪逆矩阵与线性方程组[J].重庆职业技术学院学报,2006,15(6):158-159. 被引量:13
  • 4袁胜发,褚福磊.支持向量机及其在机械故障诊断中的应用[J].振动与冲击,2007,26(11):29-35. 被引量:88
  • 5Kraft E M.Integrated test and evaluation:a knowledge-based approach to system development,AIAA-1995-3982[R].Reston:AIAAf 1995.
  • 6Waters D P.Integrating modeling and simulation with test and evaluation activities,AIAA-2004-6800[R].Reston:AIAA,2004.
  • 7Claxton J D,Cavoli C,Johnson C.Test and evaluation management guide[M].6th ed.Fort Belvoir,VA:The Defense Acquisition University Press,2012? 311.
  • 8Adcock C J.Sample size determination:a review[J].Journal of the Royal Statistical Society:Series D(The Statistician),1997,46(2):261-283.
  • 9Murphy K R,Myors B,Wolach A H.Statistical power analysis:a simple and general model for traditional and modern hypothesis tests[M].3rd ed.New York:Rout-ledge,2009;224.
  • 10Balci O.Verification,validation and accreditation of simulation models[C]//Proceedings of the 1997 Winter Simulation Conference.Piscataway,NJ:IEEE,1997:135-141.

共引文献331

同被引文献31

引证文献3

二级引证文献3

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部