期刊文献+

基于卷积推理的多跳知识图谱问答算法 被引量:2

Multi-hop Knowledge Graph Question Answering Based on Convolution Reasoning
下载PDF
导出
摘要 多跳问题相比于简单问题更符合人们日常的提问方式,同时,研究多跳知识图谱问答(KGQA)算法有助于智能问答系统的推广。然而,现有的多跳KGQA方法在2~3跳问题和不完整知识图谱上的答案推理能力较弱。针对这一问题,本文提出基于卷积推理的多跳KGQA算法。首先,为了获取更具表示能力的问题嵌入向量,本文根据问题与关系的语义相似性提出结合字符特征和语义特征的问题嵌入模型;而后,为了增强算法的长链接推理能力,提出基于卷积神经网络(CNN)的答案推理模型来抽取嵌入向量的高阶信息。实验结果显示,相比于已有的5种算法,本文算法在MetaQA数据集的2跳和3跳问题答案预测准确率分别提高了1.7和1.3个百分点,在不完整知识图谱的2跳和3跳问题上分别提高了9.4和9.3个百分点。 Compared with simple questions,multi-hop questions are more in line with people's daily questioning methods.At the same time,the research on the multi-hop knowledge graph question-answering(KGQA)algorithm is useful to enhance the intelligent question answering system.However,the existing multi-hop KGQA methods show weak answer reasoning ability in 2 and 3-hop questions and incomplete knowledge graph.To solve this problem,a multi-hop KGQA based on convolution reasoning is proposed in this paper.A question embedding model combining character features and semantic features is developed according to the semantic similarity between questions and relationships to obtain more expressive question embedding.Furthermore,to enhance the long link reasoning ability of the algorithm,an answer reasoning model based on convolutional neural network(CNN)is proposed to extract the high-order information of the embedding.The experimental results on MetaQA dataset demonstrate that compared with the five existing methods,the new algorithm improves the prediction accuracy of the 2-hop and 3-hop questions in the complete knowledge graph and incomplete knowledge graph by 1.7%,1.3%,9.4%,and 9.3%,respectively.
作者 潘海明 陈庆锋 邱杰 何乃旭 刘春雨 杜晓敬 PAN Haiming;CHEN Qingfeng;QIU Jie;HE Naixu;LIU Chunyu;DU Xiaojing(School of Computer Electronics and Information,Guangxi University,Nanning Guangxi 530004,China;School of Computer Science and Engineering,Yulin Normal University,Yulin Guangxi 537000,China)
出处 《广西师范大学学报(自然科学版)》 CAS 北大核心 2023年第1期102-112,共11页 Journal of Guangxi Normal University:Natural Science Edition
基金 国家自然科学基金(61963004,61862006) 广西自然科学基金重点项目(2017GXNSFDA198033)。
关键词 知识图谱问答 知识图谱嵌入 语言模型 卷积神经网络 knowledge graph question-answering knowledge graph embedding language model convolutional neural network
  • 相关文献

参考文献7

二级参考文献99

  • 1何海芸,袁春风.基于Ontology的领域知识构建技术综述[J].计算机应用研究,2005,22(3):14-18. 被引量:41
  • 2Miller G A. WordNet: A lexical database for English [J]. Communications of the ACM, 1995, 38(11): 39-41.
  • 3Bollacker K, Evans C, Paritosh P, et al. Freebase: A collaboratively created graph database for structuring human knowledge [C] //Proe of KDD. New York: ACM, 2008: 1247-1250.
  • 4Miller E. An introduction to the resource description framework [J]. Bulletin of the American Society for Information Science and Technology, 1998, 25(1): 15-19.
  • 5Bengio Y. Learning deep architectures for AI [J]. Foundations and Trends in Machine Learning, 2099, 2 (1) 1-127.
  • 6Bengio Y, Courville A, Vincent P. Representation learning: A review and new perspectives [J]. IEEE Trans on Pattern Analysis and Machine Intelligence, 2013, 35(8): 1798-1828.
  • 7Turian J, Ratinov L, Bengio Y. Word representations: A simple and general method for semi-supervised learning [C]// Proc of ACL. Stroudsburg, PA: ACL, 2010:384-394.
  • 8Manning C D, Raghavan P, Schutze H. Introduction to Information Retrieval [M]. Cambridge, UK: Cambridge University Press, 2008.
  • 9Mikolov T, Sutskever I, Chen K, et al. Distributed representations of words and phrases and their eompositionality [C] //Proe of NIPS. Cambridge, MA: MIT Press, 2013:3111-3119.
  • 10Zhao Y, Liu Z, Sun M. Phrase type sensitive tensor indexing model for semantic composition [C] //Proc of AAAI. Menlo Park, CA: AAAI, 2015: 2195-2202.

共引文献518

同被引文献5

引证文献2

二级引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部