期刊文献+

Landing control method of a lightweight four-legged landing and walking robot 被引量:2

原文传递
导出
摘要 The prober with an immovable lander and a movable rover is commonly used to explore the Moon’s surface.The rover can complete the detection on relatively flat terrain of the lunar surface well,but its detection efficiency on deep craters and mountains is relatively low due to the difficulties of reaching such places.A lightweight four-legged landing and walking robot called“FLLWR”is designed in this study.It can take off and land repeatedly between any two sites wherever on deep craters,mountains or other challenging landforms that are difficult to reach by direct ground movement.The robot integrates the functions of a lander and a rover,including folding,deploying,repetitive landing,and walking.A landing control method via compliance control is proposed to solve the critical problem of impact energy dissipation to realize buffer landing.Repetitive landing experiments on a five-degree-of-freedom lunar gravity testing platform are performed.Under the landing conditions with a vertical velocity of 2.1 m/s and a loading weight of 140 kg,the torque safety margin is 10.3%and 16.7%,and the height safety margin is 36.4%and 50.1%for the cases with or without an additional horizontal disturbance velocity of 0.4 m/s,respectively.The study provides a novel insight into the next-generation lunar exploration equipment.
出处 《Frontiers of Mechanical Engineering》 SCIE CSCD 2022年第4期33-52,共20页 机械工程前沿(英文版)
基金 funded by the National Key R&D Program of China(Grant No.2021YFF0307905).
  • 相关文献

同被引文献7

引证文献2

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部