期刊文献+

Co掺杂6H-SiC的第一性原理研究

First-principles study of Co-doped 6H-SiC
下载PDF
导出
摘要 此文用第一性原理密度泛函理论(DFT)的广义梯度近似(GGA)的平面波赝势法(PBE),计算了未掺杂及Co替位Si掺杂的6H-SiC体系的电子结构与光学特性,获得了Co掺杂将导致6H-SiC由带隙为2.016 eV的间接带隙半导体变成带隙为0.071 eV的p型半导体,且有磁性;掺杂后能带结构中出现由Co的3d能级造成的杂质能级;且载流子浓度提升,使得材料的导电性得到提高;替换掺杂使得6H-SiC在光学性质方面有所变化,介电函数实部和虚部在低能级处增大,吸收光谱从未掺杂的3.2 eV开始吸收变为略高于0 eV就开始;反射谱与电导率曲线发生红移等有益结果. A plane-wave pseudopoten tial method(PBE)for generalized grodient approximation(GGA)of first principles density functional theory(DFT)is adopted to calculate the electronic structures and optical characteristics of the intrinsic and Co(replacing Si)doped 6 H-SiC systems.It is shown that Co doping will change 6 H-SiC from indirect band gap semiconductor with band gap of 2.016 eV to p-type semiconductor with band gap of 0.071 eV and lead it to be magnetic.The impurity energy levels in the band structure after doping is caused by the 3 d energy levels of Co;the carrier concentration which improves the electrical conductivity of the material.Replacement doping makes a change in 6 H-SiC optical properties,the real and imaginary parts of the dielectric function increase at low energy levels,and the absorption spectrum changes from 3.2 eV to slightly more than 0 eV.The reflection spectrum and electrical conductivity curve are red-shifted.The conductivity of 6 H-SiC is enhanced by doping,making its application in infrared light more extensively.
作者 吴磊 王嘉豪 刘淑平 WU Lei;WANG Jia-Hao;LIU Shu-Ping(School of Applied Science,Taiyuan University of Science and Technology,Taiyuan 030024,China;The Second Research Institute of China Electronics Technology Group Corporation,Shanxi Key Laboratory of Wide Band gap Semiconductor Materials,Taiyuan 030024,China)
出处 《原子与分子物理学报》 CAS 北大核心 2023年第5期155-160,共6页 Journal of Atomic and Molecular Physics
基金 宽禁带半导体材料山西省重点实验室开放基金(201712)。
关键词 6H-SIC 带隙 电子结构 光学特性 6H-SiC Band gap Electronic structure Optical properties
  • 相关文献

参考文献7

二级参考文献37

  • 1宋生,胡小波,徐现刚.半绝缘SiC单晶生长和表征[J].人工晶体学报,2012,41(S1):166-169. 被引量:4
  • 2彭同华,刘春俊,王波,王锡铭,郭钰,赵宁,李龙远,刘宇,黄青松,贾玉萍,王刚,郭丽伟,陈小龙.宽禁带半导体碳化硅单晶生长和物性研究进展[J].人工晶体学报,2012,41(S1):234-241. 被引量:14
  • 3赵建华,邓加军,郑厚植.稀磁半导体的研究进展[J].物理学进展,2007,27(2):109-150. 被引量:35
  • 4Bhatnagar M, Baliga B J. Comparison of 6H-SiC, 3C-SiC, anti Si for Power Devices[ J]. Electron Devices, IEEE Transactions on, 1993,40(3 ) : 645-655.
  • 5Hobgood H M D, Glass R C, Augustine G, et al. Semi-insulating 6H-SiC Grown by Physical Vapor Transport[ J]. Applied Physics Letters, 1995,66(11):1364-1366.
  • 6Son N T, Carlsson P, Gallstrfim A, et al. Prominent Defects in Semi-insulating SiC Substrates[J]. Physica B: Condensed Matter,2007,401:67- 72.
  • 7Sghaier N, Bluet J M, Souifi A, et al. Study of Trapping Phenomenon in 4H-SiC MESFETs: Dependence on Substrate Purity [ J ]. Electron Devices, IEEE Transactions on,2003,50(2) :297-302.
  • 8Maier K, MUller H D, Schneider J. Transition Metals in Silicon Carbide (SiC) : Vanadium and Titanium [ C ]. Materials Science Forum, 1992, 83:1183-1194.
  • 9Garces N Y, Glaser E R, Carlos W E, et al. Behavior of Defects in Semi-insulating 4H-SiC after Ultra-high Temperature Anneal Treatments [ J ]. Physica B: Condensed Matter,2007,401:77-80.
  • 10Kimotn T, Nishino H, Ueda T, et al. Photoluminescence of Ti Doped 6H-SiC Grown by Vapor Phase Epitaxy[ J]. Japanese Journal of Applied Physics,1991,30(2B) :L289-L291.

共引文献13

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部