摘要
针对公共交通客运量的预测问题,结合ARIMA、灰色预测以及BP神经网络的优势,采用临近期的误差平方和来计算动态权重,将突发事件定义为影响因子,建立了修正动态加权组合模型.选取北京市1978—2021年公共交通客运量进行实证分析.实证分析结果表明,修正动态加权组合模型的预测效果比单一模型和固定权重组合模型更好.
Aiming at the forecasting problem of public transport passenger volume,combining the advantages of ARIMA,grey prediction and BP neural network,the dynamic weight is calculated by the sum of the squares of errors in the near period,the modified dynamic weighted combination model is established by defining emergency events as impact factors.The public transport passenger volume of Beijing from 1978 to 2021 is selected for empirical analysis.The empirical analysis results show that the modified dynamic weighted combination model has better prediction effect than the single model and the fixed weight combination model.
作者
郭婷婷
宇世航
GUO Tingting;YU Shihang(School of Science,Qiqihar University,Qiqihar 161006,China)
出处
《高师理科学刊》
2023年第1期31-37,共7页
Journal of Science of Teachers'College and University
基金
黑龙江省自然科学基金项目(LH2019A027)。
关键词
公共交通客运量
修正动态组合模型
ARIMA模型
灰色预测模型
BP神经网络模型
突发事件
public transport passenger volume
modified dynamic combination model
ARIMA model
grey predictive model
Back-propagation neural network model
emergency event