期刊文献+

面向无人驾驶车辆节能的迭代优化预测控制方法

An iterative optimization-based predictive control method for eco-driving of unmanned vehicles
下载PDF
导出
摘要 该文提出一种数据驱动的无人驾驶重型车辆节能驾驶迭代优化预测控制(IOBPC)方法。基于历史数据构造并迭代更新终端状态约束集和终端油耗函数,并对约束集和终端油耗函数进行近似处理,提高算法计算效率;通过学习车辆状态轨迹和燃油消耗的关联机理,保证优化算法代价函数在迭代过程中单调递减并最终收敛,从而实现车辆燃油经济性的显著提升。结果表明:迭代优化预测控制器在多次迭代后使车辆轨迹收敛,燃油消耗减少了约10.2%,相比基于动态规划(DP)的节能驾驶策略,节能效果得到了进一步的提升,且调节参数较少,支持实时求解,更利于实际应用。 A data-driven Iterative Optimization-Based Predictive Control(IOBPC) method for energy saving of unmanned heavy vehicles was proposed. Based on the historical data, the terminal state constraint set and terminal cost function were constructed and updated iteratively. And the approximate treatment of the constraint set and terminal cost function improved the computational efficiency of the algorithm. By learning the correlation between vehicle state trajectory and fuel consumption, the cost function of the optimization algorithm was guaranteed to decrease monotonically and converge in the iterative process, so as to realize the significant improvement of vehicle fuel economy. The results show that the iterative optimization predictive controller makes the vehicle trajectory converged and reduces fuel consumption by about 10.2% after several iterations.Compared with the energy-saving driving strategy based on dynamic programming(DP), the energy-saving effect is further improved. Moreover, it has fewer adjustment parameters and supports real-time solution, which is more conducive to practical application.
作者 刘熠 宫新乐 唐云 胡嫚 马捷 秦毅 吴飞 蒲华燕 罗均 LIU Yi;GONG Xinle;TANG Yun;HU Man;MA Jie;QIN Yi;WU Fei;PU Huayan;LUO Jun(College of Engineering and Technology,Southwest University,Chongqing 400716,China;State Key Laboratory of Automotive Safety and Energy,Tsinghua University,Beijing 100084,China;College of Mechanical and Vehicle Engineering,Chongqing University,Chongqing 400044,China)
出处 《汽车安全与节能学报》 CAS CSCD 北大核心 2023年第1期80-88,共9页 Journal of Automotive Safety and Energy
基金 国家自然科学基金(52102438) 中国博士后科学基金(2022M710523) 中央高校基本科研业务费项目(2022CDJXY-006)。
关键词 无人驾驶重型车辆 节能驾驶 迭代优化 预测控制 unmanned heavy vehicles eco-driving iterative optimization predictive control
  • 相关文献

参考文献6

二级参考文献32

  • 1伍毅平,赵晓华.基于跟踪调查的生态驾驶行为节油潜力初探[J].道路交通与安全,2014,14(1):53-55. 被引量:10
  • 2曾诚,蔡凤田,刘莉,曹磊.不同驾驶操作方法下的汽车运行燃料消耗量分析[J].交通节能与环保,2011,7(1):31-34. 被引量:8
  • 3张学敏,葛蕴珊,张昱,张豫南,韩秀坤,高力平.利用碳平衡法进行汽车油耗测量的应用研究[J].车用发动机,2005(3):56-58. 被引量:15
  • 4Barth M, Mandava S, Boriboonsomsin K, et al. Dynamic ECO-driving for arterial corridors [C]//lnteg and Sustainable Transp Syst (FISTS), 2011 IEEE Forum on. IEEE, 2011: 182-188.
  • 5Xia H, Boriboonsomsin K, Barth M. Dynamic eco-driving for signalized arterial corridors and its indirect network- wide energy/emissions benefits [J]. J Intel Transp Syst, 2013, 17(1): 31-41.
  • 6Xia H, Boriboonsomsin K, Schweizer F, et al. Field operational testing of ECO-approach technology at a fixed-time signalized intersection [C]//Intel Transp Syst (ITSC), 2012 15th Int'I IEEE Conf IEEE, 2012: 188-193.
  • 7Kamalanathsharma R K, Rakha H A. Multi-stage dynamic programming algorithm for eco-speed control at traffic signalized intersections [C]//Proc 16th Int'l IEEE Ann Con['on Intel Transp Syst ITSC, 2013.
  • 8Wu C, Zhao G, Ou B. A fuel economy optimization system with applications in vehicles with human drivers and autonomous vehicles [J]. Transp Res Part D: Transp andEnvir, 2011, 16(7): 515-524.
  • 9Dep of Geography Univ of Heidelberg. OpenRouteService. [2013.12.14]. http://openrouteservice.org.
  • 10Kamal M A S, Mukai M, Murata J, et al. Ecological vehicle control on roads with up-down slopes [J]. Int'l Transp Syst, IEEE Trans, 2011, 12(3): 783-794.

共引文献120

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部