期刊文献+

云环境下基于动态滑动窗口多通道Bi-LSTM的虚拟机故障预测模型 被引量:1

Virtual machine fault prediction model based on dynamic sliding window multi-channel Bi-LSTM in cloud environment
下载PDF
导出
摘要 针对点值预测方法预测虚拟机故障,未充分利用虚拟机历史周期特征和上下文信息、预测准确率不高的问题,提出了一种动态滑动窗口多通道Bi-LSTM的虚拟机故障预测模型。该模型首先利用动态滑动窗口动态捕获虚拟机故障发生过程的上下文特征;然后构建多通道机制的Bi-LSTM以同时学习不同指标类之间的相关性特征,预测虚拟机下一周期的故障;最后根据OCSVM和区间偏移度方法对预测结果进行判断,得出具体的故障类型。实验表明,该模型在预测准确率、召回率、F值三个指标上均优于基线模型,验证了模型对虚拟机故障预测的有效性。 To address the issue that the point-value prediction method does not make full use of the historical cycle features and contextual information of VM,and the prediction accuracy is not high, this paper proposed a dynamic sliding window multi-channel Bi-LSTM for VM fault prediction.The model firstly used dynamic sliding windows to dynamically capture the contextual features of the VM failure process, then it constructed a multi-channel Bi-LSTM to simultaneously learn the correlation features between different indicator classes, so as to predict the VM failure in the next cycle.Finally it judged the prediction results according to OCSVM and interval skewness methods to derive specific failure types.Experiments show that the model outperforms the baseline model in three metrics, namely prediction accuracy, recall and F-value, verifying the effectiveness of the model for VM fault prediction.
作者 王开放 姜瑛 Wang Kaifang;Jiang Ying(Computer Technology Application Key Laboratory of Yunnan Province,Kunming 650500,China;Faculty of Information Engineering&Automation,Kunming University of Science&Technology,Kunming 650500,China)
出处 《计算机应用研究》 CSCD 北大核心 2023年第3期855-862,共8页 Application Research of Computers
基金 国家自然科学基金项目(62162038,61462049,61063006,60703116) 国家重点研发计划项目(2018YFB1003904) 云南省应用基础研究计划重点项目(2017FA033) 云南省计算机技术应用重点实验室开放基金资助项目(2020101)。
关键词 虚拟机 故障预测 动态滑动窗口 多通道 Bi-LSTM virtual machine fault prediction dynamic sliding window multi-channel Bi-LSTM
  • 相关文献

参考文献8

二级参考文献34

  • 1刘杰,金弟,杜惠君,刘大有.一种新的混合特征选择方法RRK[J].吉林大学学报(工学版),2009,39(2):419-423. 被引量:7
  • 2王娟,慈林林,姚康泽.特征选择方法综述[J].计算机工程与科学,2005,27(12):68-71. 被引量:64
  • 3Kumar R A. Pragmatic Approach to Predict Hardware Failures in Storage Systems Using MPP Database and Big Data Technologies[ C ]//Proceedings of IACC' 14. Washington D. C. ,USA :IEEE Press ,2014:779-788.
  • 4Sunita S. An Associative Classifier Using Weighted Association Rule [ C ]//Proceedings of 2009 World Congresson Nature & Biologically Inspired Computing. Piscataway, USA : IEEE Publications ,2009 : 1492-1496.
  • 5Soean B. Fuzzy Association Rule Mining Approaches for Enhancing Prediction Performance [ J ]. Expert Systems with Applications,2013,40(17) :6928-6937.
  • 6Kuok C M, Fu A. Mining Fuzzy Association Rules in Database [ J ]. SIGMOD Record, 1998,27 ( 1 ) : 41-46.
  • 7Chen Zuoliang. Building an Associative Classifier Based on Fuzzy Association Rules [ J ]. International Journal of Computational Intelligence Systems, 2008, 1 ( 3 ) : 262- 272.
  • 8Faustino C P, Novaes C P. Improving the Performance of Fuzzy Rules-based Forecasters Through Application of FCM Algorithm [ J ]. Artificial Intelligence Review, 2014,41 (2) :287-300.
  • 9Ichihashi H. FCM Classifier for High-dimensional Data[ C]//Proceedings of IEEE International Con- ference on Fuzzy Systems. Washington D. C. , USA: IEEE Press, 2008 : 200-206.
  • 10Pi Dechang. A Modified Fuzzy C-means Algorithm for Association Rules Clustering [ M ].Berlin, Germany: Springer, 2006.

共引文献414

同被引文献20

引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部