期刊文献+

基于量子粒子群优化的多波束卫星联合资源分配算法 被引量:2

Joint resource allocation algorithm for multi-beam satellite based on quantum-behaved particle swarm optimization
下载PDF
导出
摘要 当使用元启发式算法求解多波束卫星联合资源分配问题时,时延约束和容量约束会导致计算复杂度增大,且算法难以收敛。对此,通过在目标函数中引入惩罚机制,在无效解的目标函数值加入了惩罚值,使得算法的优化解自适应地满足这两个约束。在此基础上,提出了基于量子粒子群优化的联合资源分配算法。仿真结果表明,惩罚策略的引入解决了应用元启发式算法时,难以处理时延约束和容量约束的问题,而带有惩罚机制的量子粒子群算法在分配公平性指数、总系统容量上均优于已有联合分配算法。 When the meta-heuristic algorithm solves the joint resource allocation problem of multi-beam satellites, the computational complexity increases and the algorithm is difficult to converge due to the time delay constraint and capacity constraint.This paper introduced a penalty mechanism in the objective function, and added a penalty value to the objective function of the invalid solution, so that the optimized solution adaptively satisfied these two constraints.Based on this, this paper proposed a joint resource allocation algorithm based on quantum-behaved particle swarm optimization.Simulation results show that the introduction of the penalty strategy solves the problem of difficulty in handling the delay constraint and capacity constraint when applying the meta-heuristic algorithm.The quantum-behaved particle swarm optimization algorithm with penalty mechanism outperforms the existing joint allocation algorithm in terms of allocation fairness index and total system capacity.
作者 高威 王磊 瞿连政 Gao Wei;Wang Lei;Qu Lianzheng(College of Information&Communication,National University of Defense Technology,Wuhan 430014,China)
出处 《计算机应用研究》 CSCD 北大核心 2023年第3期868-873,879,共7页 Application Research of Computers
基金 国防预研项目。
关键词 多波束卫星 联合资源分配 量子粒子群优化 惩罚策略 约束处理 multibeam satellite joint resource allocation quantum-behaved particle swarm optimization penalty mechanism constraint handling
  • 相关文献

参考文献4

二级参考文献34

  • 1ITU-R Rec. P. 618-10-2009 ,Propagation Date and Pre- diction Methods Required for the Design of Earth-space Telecommunication Systems [ S ]. Geneva: Radio Commu- nication Sector,2009.
  • 2ITU-R Ree. P. 1853 - 10-2009, Tropospheric Attenuation Time Series Synthesis [ S ]. Geneva: Radio Communica- tion Sector,2009.
  • 3DESTOUNIS A, PANAGOPOULOS D A. Dynamic Power Allocation for Broadband Multi-beam Satellite Communi- cation Networks [ J ]. IEEE Communications Letters, 2011, 15(04) :380-382.
  • 4W Li, X Huang, H Leung. Performance evaluation of dig- ital beam-forming strategies for satellite communications [ J ]. IEEE Transactions on Aerospace and Electronic Sys- tems, 2004, 40(1) :12-26.
  • 5J P Choi and V W S Chan. Optimum power and beam al- location based on traffic demands and channel conditions over satellite downlinks [ J ]. IEEE Transaction on Wire- less Communications, 2005,4 (6) : 2983-2993.
  • 6Yang Hong, A Srinivasan, B Cheng, L Hartman, P An- dreadis. Optimal power allocation for multiple beam satel- lite systems [ C ]//Proceeding IEEE Radio and Wireless Symposium. Orlando Florido, 2008 : 823- 826.
  • 7Feng Qi, Li Guangxia, Feng Shaodong, Gao Qian. Optimum Power Allocation Based on Traffic Demand for Multi-beam Satellite Communication Systems [ C ]//International Confer-ence on Communication Technology (ICCT), 2011 IEEE 13^th. Jinan, China, 2011: 873-876.
  • 8U Park, H W Kim, D S Oh, B J Ku. A Dynamic Band- width Allocation Scheme for a Multi-spot-beam Satellite System[J]. ETRI Journal, 2012,34(4): 613-616.
  • 9J Lei, M A Vazquez-Castro. Frequency and Time-Space Du- ality Study for Multibeam Satellite Communications [ C ]// Proceedings of 2009 IEEE Global Communication Confer- ence. Honolulu: IEEE,2010: 1-5.
  • 10T M Cover, J A Thomas. Elements of Information Theory [M]. John Wiley & Sons, Inc. , New York, 1991.

共引文献24

同被引文献15

引证文献2

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部