期刊文献+

基于深度学习的现场促销AI稽核方法的研究

Research on AI Audit Method of On-site Promotion Based on Deep Learning
下载PDF
导出
摘要 针对通信运营商社会渠道网点在申报现场促销活动酬金补贴时,需要投入大量人力对促销场次真实性、促销照片规范性等进行人工稽核的问题,文中通过对现场促销位置、时间、工号进行多维度的合理性自动审核,基于深度学习技术开发现场促销AI稽核模型。该模型能够高效稽核促销真实性,使稽核效率提升80%,有效降低了套利风险,节约了31.14%的促销包干酬金支出。 In view of the problem that the social channel outlets of communication operators need to invest a lot of manpower to manually audit the authenticity of promotion sessions,the standardization of promotion photos and other issues when applying for on-site promotion subsidy,this paper develops an AI audit model for on-site promotion based on in-depth learning technology through multi-dimensional automatic verification of the rationality of on-site promotion location,time,and job number,and effectively audit the authenticity of promotion,the audit efficiency was improved by 80%,effectively reducing arbitrage risk,and saving 31.14%of the promotion lump sum remuneration.
作者 陈晓冰 CHEN Xiaobing(China Mobile Communications Group Guangdong Co.,Ltd.,Shantou Branch,Shantou,Guangdong 515000,China)
出处 《移动信息》 2023年第2期125-127,共3页 MOBILE INFORMATION
关键词 深度学习 图像识别 AI稽核 Deep learning Image recognition AI audit
  • 相关文献

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部