期刊文献+

锂离子动力电池低温加热策略研究进展 被引量:1

Research Progress of Low-Temperature Heating Strategies for Lithium-Ion Power Batteries
下载PDF
导出
摘要 随着新能源产业飞速发展,纯电动汽车的市场渗透率迅速上升。而制约电动汽车使用的一大关键因素,就是环境温度。在低温下,动力电池的功率特性衰减、电池内阻增大、电池可用容量降低。这些负面因素将直接影响电动汽车的续航里程与安全性。基于动力电池低温加热策略的主要产热区域,将目前锂离子电池低温加热策略划分为电池内部加热策略和电池外部加热策略两个大类。分别对这两个大类进行更详细的梳理,对目前的锂离子电池低温加热策略进行了系统的研究。分析了各种加热策略的优点与弊端,并针对存在的问题提出了解决意见。可为后续电动汽车动力电池低温加热策略的研究、锂离子电池低温下热管理系统的设计提供参考。 With the rapid development of the new energy industry,the market penetration rate of blade electric vehicles(BEVs)is rising rapidly.A key factor that restricts the use of BEVs is the ambient temperature.At low temperatures,the power characteristics of lithium-ion batteries(LiBs)deteriorate,the internal resistance of LiBs increases,and the available capacity of LiBs decreases.These negative impacts will directly affect the cruising range and safety of BEVs.Based on the main heat-generation regions,the low-temperature heating strategies were divided into two categories:internal heating and external heating.The two categories were also sorted out in more detail separately,and the current low-temperature heating strategies for Li Bs were systematically studied.The advantages and disadvantages of various heating strategies were analyzed,and solutions to the existing problems were proposed.It may provide a reference for the follow-up research on low-temperature heating strategies and the design of battery thermal management systems.
作者 赵丁 安超 雷治国 ZHAO Ding;AN Chao;LEI Zhi-guo(College of Mechanical and Electrical Engineering,Fujian Agriculture and Forestry University,Fuzhou 350108,China)
出处 《新能源进展》 CSCD 2023年第1期85-92,共8页 Advances in New and Renewable Energy
基金 福建省自然科学基金项目(2019J01405) 福建农林大学科技创新专项基金项目(CXZX2018031)。
关键词 电动汽车 动力电池 低温加热策略 electric vehicle power batteries low-temperature heating strategy
  • 相关文献

参考文献19

二级参考文献104

  • 1唐致远,吴菲.改性石墨用作锂离子蓄电池负极材料[J].电源技术,2006,30(2):155-161. 被引量:5
  • 2KEYSER M, MIHALIC M, PESARAN A. Thermal characterization of plastic lithium ion cells [C]//The 18^th International Seminar and Exhibit on Primary and Secondary Batteris.Fort Lauderdale,Florida: Advanced Battery Technology, 2001.
  • 3CHEN S C, WANG C C. Thermal analysis of lithium-ion batteries [J]. J Power Sources, 2005, 140:111-124.
  • 4BERNARDI D, PAWLIKOWSKI E, NEWMAN J.A general energy balance for battery systems [J]. J Electrochemical Society, 1985, 132: 1.
  • 5BOTTE G G,JOHNSON B A,WHITE R E.lnfluence of some design variables on the thermal behavior of a lithium-ion cell [J].J Electrochemical Society, 1999, 146: 3.
  • 6HALLAJ S A, MALEKI H, HONG J S, et al. Thermal modeling and design considerations of lithium-ion batteries [J]. J Power Sources, 1999, 83: 1-8.
  • 7SATO N. Thermal behavior analysis of lithium-ion batteries for electric and hybrid vehicles[J]. J Power Sources, 2001, 99: 70-77.
  • 8FUNAHASHI A, KIDA Y, YANAGIDA K, et al. Thermal simulation of large-scale lithium secondary batteries using a graphite-coke hybrid carbon negative electrode and LiNi0.7Co0.3O2 positive electrode [J]. J Power Sources, 2002, 104: 248-252.
  • 9HALLAJ S A, SELMAN J R.Thermal modeling of secondary lithium batteries for electric vehicle/hybrid electric vehicle applications [J]. J Power Sources, 2002, 110: 341-348.
  • 10ONDA K, OHSHIMA T, NAKAYAMA M, et al. Thermal behavior of small lithium-ion battery during rapid charge and discharge cycles [J]. J Power Sources, 2006, 158: 535-542.

共引文献196

同被引文献5

引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部