摘要
针对小尺寸JPEG压缩图像携带有效信息较少、中值滤波痕迹不明显的问题,提出一种基于多残差学习与注意力融合的图像中值滤波检测算法。该算法将多个高通滤波器与注意力模块相结合,获取带权值的多残差特征图作为特征提取层的输入,特征提取层采用分组卷积形式,对输入的多残差特征图进行多尺度特征提取,融合不同尺度的特征信息,同时采用密集连接方式,每一层卷积的输入来自前面所有卷积层的输出和。实验结果表明,针对小尺寸JPEG压缩图像的中值滤波检测,本文算法比现有算法具有更高的检测精度,且能更有效地检测与定位局部篡改区域。
A median filter detection algorithm based on multi-residual learning and attention fusion is proposed for small size JPEG compressed images carrying less effective information and less obvious median filter traces.In this algorithm, multiple high-pass filters are combined with the attention module to obtain multi-residual feature maps with weights as the input of the feature extraction layer, and the feature extraction layer adopts the form of grouped convolution to perform multi-scale feature extraction on the input multi-residual feature maps and fuse the feature information with different scales, while the dense connection is used, and the input of each convolution layer comes from the output sum of all previous convolution layers.The experimental results show that the proposed algorithm in this paper has higher detection accuracy than existing algorithms for median filter detection of small JPEG compressed images, and can detect and locate local tampered regions more effectively.
作者
胡万
张玉金
张涛
沈万里
HU Wan;ZHANG Yujin;ZHANG Tao;SHEN Wanli(School of Electronic and Electrical Engineering,Shanghai University of Engineering Science,Shanghai 201620,China;School of Computer Science and Engineering,Changshu Institute of Technology,Changshu,Jiangsu 215500,China)
出处
《光电子.激光》
CAS
CSCD
北大核心
2023年第1期81-89,共9页
Journal of Optoelectronics·Laser
基金
国家自然科学基金(62072057)
上海市自然科学基金(17ZR1411900)资助项目。
关键词
多残差学习
中值滤波检测
预处理
通道注意力
多尺度特征
multiple-residual learning
median filtering detection
preprocessing
channel attention
multi-scale feature