摘要
Qilian Mountains in Northwest China is a significant ecological security barrier due to its distinctive geographic setting,which has significant biological resource and gene pool.In order to assess the soil quality and ecosystem health in this area,we identified the structural characteristics and functional groups of soil microbial communities.This study focused on Amidongsuo,a typical watershed of the Qilian Mountains,and researched the vertical distribution and dominant populations of soil microorganisms in different habitats,and the relationship between soil microorganisms and environmental factors.Soil microorganisms from three grassland plots,five shrubland plots,and five forest plots in Amidongsuo were studied using high-throughput sequencing.The Venn diagram showed that the types of bacteria were fewer than those of fungi in Amidongsuo.Soil bacteria Acidobacteriota,Proteobacteria,and Methylomirabilota as well as fungi Basidiomycota,Ascomycota,and Mortierellomycota played dominant roles in Amidongsuo,according to the LEfSe(linear discriminant analysis(LDA)effect size)and community structure analyses.According to the ANOSIM(analysis of similarities)result,for both bacteria and fungi,R values of grassland and shrubland were small(R^(2)=0.045 and R^(2)=0.256,respectively),indicating little difference between these two ecosystems.RDA(redundancy analysis)showed a closer relationship between soil nutrients and fungi,and a gradually decreasing correlation between soil nutrients and microorganisms with increasing soil depth.Bacteria were mainly affected by pH,nitrogen(N),and potassium(K),while fungi were mainly affected by K.Overall,fungi had more effect on soil quality than bacteria.Therefore,adjustment of soil K content might improve the soil environment of Amidongsuo in the Qilian Mountains.
基金
funded by the Qinghai Provincial Natural Science Foundation Project(2020-ZJ-725)
the Wetland Protection and Restoration Project of the Second Batch of Forestry Reform and Development Funds in Qinghai Province,China(QHTX-2020-043-02).