期刊文献+

一种热红外与可见光影像深度特征匹配方法

A Method Based on Depth Features for Matching Thermal Infrared Images with Visible Images
原文传递
导出
摘要 针对无人机热红外影像与光学卫星影像的匹配难题,提出一种基于异源地标数据集学习的深度局部特征匹配方法。首先,利用生成对抗网络学习热红外与可见光影像的灰度分布规律,并进一步合成用于特征提取模型训练的热红外影像地标数据集;然后,联合残差网络和注意力机制模型,从数据集中学习深度不变特征;最后,经过对不变特征的匹配、提纯等处理,获得像对的正确匹配点。试验测试了该方法的性能,并与KAZE、特征检测描述网络和深度局部特征模型进行了对比。结果表明,提出的方法对灰度、纹理、重叠率以及几何变化具有较强的适应性,且匹配效率较高,可为无人机视觉导航提供支撑。 Objectives:Aiming at the matching problem of unmanned aerial vehicle(UAV)thermal infrared images and optical satellite images,a deep local feature matching method based on heterogeneous landmark dataset for learning is proposed.Methods:Firstly,the gray distribution law of thermal infrared images and visible images is learned by the generative adversarial network,and the landmark dataset consisting of thermal infrared images for feature extraction model training is synthesized.Secondly,the deep invariant features are learned from the multi-modal landmark dataset by the residual network and attention mechanism.Finally,correct matching points of image pairs are obtained by matching and purifying the invariant features.Results:The performance of this method was tested experimentally and compared with KAZE,detect-and-describe network and deep local features.The results show that the adaptability of this method to the grayscale,texture,overlap rate and geometric variations is stronger,and the matching efficiency of this method is higher.Conclusions:The effectiveness of this method is proved through multiple sets of experiments.Therefore,the UAV visual navigation is provided support for.
作者 崔志祥 蓝朝桢 张永显 侯慧太 秦剑琪 CUI Zhixiang;LAN Chaozhen;ZHANG Yongxian;HOU Huitai;QIN Jianqi(Troops 31682,Lanzhou 730020,China;Institute of Geospatial Information,Information Engineering University,Zhengzhou 450001,China;Troops 63611,Kuerle 841000,China)
出处 《武汉大学学报(信息科学版)》 EI CAS CSCD 北大核心 2023年第2期316-324,共9页 Geomatics and Information Science of Wuhan University
基金 中原科技创新领军人才计划(194200510023)。
关键词 异源地标数据集 深度局部特征 匹配 热红外 可见光 heterogeneous landmark dataset deep local feature match thermal infrared visible
  • 相关文献

参考文献7

二级参考文献66

  • 1倪国强,刘琼.多源图像配准技术分析与展望[J].光电工程,2004,31(9):1-6. 被引量:83
  • 2牛力丕,毛士艺,陈炜.基于Hausdorff距离的图像配准研究[J].电子与信息学报,2007,29(1):35-38. 被引量:21
  • 3Peng Wang, Zhi-guo Qu, Ping Wang, et al. A Coarse-to-Fine Matching Algorithm for FLIR and Optical Satellite Image Registration[J]. leee Geoscienee And Remote Sensing Letters, 2012, 9(4): 599-603.
  • 4Barbara Zitova, Jan Flusser. Image registration methods: a survey[J]. Image and Vision Computing, 2003(21): 977-1000.
  • 5Yong Sun Kim, Jae Hak Lee, Jong Beom Ra. Multi-sensor image registration based on. intensity and edge orientation information[J]. Pattern Recognition, 2008(41): 3356-3365.
  • 6李冬梅,张惊雷.基于SURF算法的可见光与红外图像的匹配[J].仪器仪表学报,2011,32(6):268.270.
  • 7张怀利.异类传感器图像配准的若干关键技术研究[D].北京:北京理工大学.2008:32-39.
  • 8Herbert Bay, Andreas Ess, Tinne Tuytelaars, et al. Speeded-Up Robust Feature[J]. Computer Vision and Image Understanding, 2008, 110(3): 346-359.
  • 9Viola P, Jones M. Rapid object detection using a boosted cascade of simple features[J]. In 1EEE Conference on Computer Vision and Pattern Recognition, 2011.
  • 10MA Fischler, RC Bolles. Random sample consensus:A paradigm for model fitting with applications to image analysis and automated cartography[J]. Communications oftheACM, 1981, 24(6): 381-395.

共引文献76

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部