期刊文献+

工业部门低碳化驱动因素与脱钩路径分析——以安徽省为例 被引量:4

Analysis of Driving Factors and Decoupling Path of Low-carbonization on Industrial Sector: A Case Study of Anhui Province
原文传递
导出
摘要 减少工业部门碳排放是实现中国碳达峰、碳中和目标的关键路径之一。为识别工业碳排放的影响因素及其减排贡献,厘清工业部门碳排放与经济发展间的脱钩路径,以2006~2019年安徽省工业碳排放为例,集成C-D生产函数、LMDI模型与Tapio解耦模型量化评估了工业部门的低碳化驱动因素及其脱钩路径。结果表明:(1)考察期内安徽省工业部门碳排放累计净增1 076.70万t,碳排放总量呈阶段性变化并在2013与2016~2018年实现了减排效果。(2)工业部门投资与工业技术水平导致了安徽省工业部门碳排放的快速增长,而能源强度的减排作用最为显著,能源结构、经济结构和劳动力投入在一定程度上抑制了工业CO_(2)排放,特别是劳动力投入呈现先促进后抑制的变化趋势。(3)安徽省工业CO_(2)排放与经济发展间的脱钩状态有4种:弱解耦(2008~2012和2014~2015年)、强解耦(2013和2016~2018年)、扩张耦合(2006~2007年)和扩张负解耦(2019年);抑制脱钩因素有技术水平和资本投入;促进脱钩因素有能源强度和经济结构;其中能源结构和劳动力逐渐由抑制脱钩转变为促进脱钩,且劳动力投入因素变化最为显著。实现安徽省工业CO_(2)减排,建议进一步优化能耗结构与经济结构,提升能源强度和劳动力投入水平,并逐步转变安徽省工业经济发展模式,提高工业技术水平及其资本利用效率。 Reducing CO_(2)emissions from the industrial sector is one of the key paths to achieving China’s carbon peaking and carbon neutrality goals. In order to enrich the identification of influencing factors of industrial CO_(2)emissions and the contribution of each influencing factor to the elasticity of decoupling between industrial CO_(2)emissions and economic development, taking Anhui Province as an example and combining with the C-D production function, this paper quantitatively evaluates the main factors of CO_(2)emissions in the industry sector from 2006 to 2019 based on the Tapio decoupling model and LMDI model, and analyses the decoupling state between CO_(2)emission and economic growth, proposing energy efficiency policies accordingly. The results show that:(1) From the time dimension, except for 2013 and 2016-2018, the emission reduction effect was achieved, and the other years were not achieved.(2) Energy intensity suppressed industrial CO_(2)emissions, with the largest emission reduction in 2011. Technology level and capital investment promote industrial CO_(2)emissions. Energy structure, economic structure and labor input suppressed industrial CO_(2)emissions to a certain extent, especially labor input showed a trend of increasing first and then decreasing.(3) There are four decoupling states between industrial CO_(2)emissions and economic development in Anhui Province: weak decoupling(2008-2012 and 2014-2015), strong decoupling(2013 and 2016-2018), expansion coupling(2006-2007) and expansion negative decoupling(2019). The factors that inhibit decoupling include technology level and capital investment;the factors that promote decoupling include energy intensity and economic structure;the energy structure and labor force gradually change from inhibiting decoupling to promoting decoupling, and the factors of labor input change most significantly. Therefore, the Anhui province should optimize the energy consumption structure and allocation, adheres to the “double control” goal of the realization of energy consumption intensity and total CO_(2)emissions. At the same time, it must transform the mode of industrial economic development, and develop towards green and intensive industries gradually.
作者 沈叶 刘中侠 邓翠翠 王迪 SHEN Ye;LIU Zhong-Xia;DENG Cui-Cui;WANG Di(School of Finance,Taxation and Public Administration,Tongling University,Tongling 244000,China;School of Management,China University of Mining and Technology,Xuzhou 221116,China)
出处 《长江流域资源与环境》 CAS CSSCI CSCD 北大核心 2022年第12期2597-2607,共11页 Resources and Environment in the Yangtze Basin
基金 国家社会科学基金后期资助项目(19FGLB057) 国家自然科学基金项目(71974191) 中国矿业大学研究生教改项目(2021YJSJG059) 安徽省质量工程项目(2020wyxm161) 铜陵学院校级科研项目(2021tlxy11)。
关键词 工业CO_(2)排放 C-D生产函数 LMDI模型 Tapio解耦模型 industry CO_(2)emission C-D production function LMDI model Tapio decoupling model
  • 相关文献

参考文献10

二级参考文献169

共引文献205

同被引文献70

引证文献4

二级引证文献7

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部