期刊文献+

Effects of layer number and initial pressure on continuum-based buckling analysis of multi-walled carbon nanotubes accounting for van der Waals interaction

下载PDF
导出
摘要 The structural instability of multi-walled carbon nanotubes(MWCNTs) has captured extensive attention due to the unique characteristic of extremely thin hollow cylinder structure. The previous studies usually focus on the buckling behavior without considering the effects of the wall number and initial pressure. In this paper, the axial buckling behavior of MWCNTs with the length-to-outermost radius ratio less than 20 is investigated within the framework of the Donnell shell theory. The governing equations for the infinitesimal buckling of MWCNTs are established, accounting for the van der Waals(vd W) interaction between layers. The effects of the wall number, initial pressure prior to buckling, and aspect ratio on the critical buckling mode, buckling load, and buckling strain are discussed, respectively. Specially, the four-walled and twenty-walled CNTs are studied in detail, indicating the fact that the buckling instability may occur in other layers besides the outermost layer. The obtained results extend the buckling analysis of the continuum-based model, and provide theoretical support for the application of CNTs.
出处 《Applied Mathematics and Mechanics(English Edition)》 SCIE EI CSCD 2022年第12期1857-1872,共16页 应用数学和力学(英文版)
基金 Project supported by the National Natural Science Foundation of China (No. 12072003) the Beijing Natural Science Foundation of China (No. 1222001)。
  • 相关文献

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部