期刊文献+

Repercussion of Hall effect and nonlinear radiation on Couette-Poiseuille flow of Casson-Williamson fluid through upright microchannel

下载PDF
导出
摘要 The main aim of the present work is to investigate the flow and heat transport properties of non-Newtonian Casson-Williamson fluid through an upright microchannel along with entropy generation analysis,and explore the effects of convective boundary conditions,Couette-Poiseuille flow,and nonlinear radiation.The movement of liquid is scrutinized with the Hall effect and exponential heat source.The rheological characteristics of the Casson-Williamson fluid model are also considered.By considering the desirable similarity variables,the equations of motion are reduced to nonlinear ordinary differential equations.The Runge-Kutta-Fehlberg fourth-fifth order method along with the shooting method is adopted to solve these dimensionless expressions.The detailed investigation is pictorially displayed to show the influence of effective parameters on the entropy generation and the Bejan number.One of the major tasks of the exploration is to compare the Casson fluid and the Williamson fluid.The results show that the rate of heat transfer in the Casson fluid is more remarkable than that in the Williamson fluid.
出处 《Applied Mathematics and Mechanics(English Edition)》 SCIE EI CSCD 2022年第12期1951-1964,共14页 应用数学和力学(英文版)
  • 相关文献

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部