期刊文献+

冲击载荷下频率响应函数的高斯过程回归方法

Gaussian process regression method for the frequency response function under impact loads
下载PDF
导出
摘要 锤击法测试是学术和工业界广泛采用的实验模态分析方法,通常使用谱估计方法计算频率响应函数(FRF),极易受到测量数据长度和质量的影响。近年来,贝叶斯学习技术为系统和控制领域提供了一种新的探索途径。受此启发,应用复高斯过程对FRF的先验信息进行统计描述,发展了冲击载荷下FRF估计的贝叶斯推断方法,不仅得到了FRF的最大后验估计,还给出了FRF估计的方差。利用QR分解技术改善了超参数优化的数值正定性。通过数值算例和振动实验证明了提出方法的有效性和可靠性。 A hammering test is an experimental modal analysis method widely used in academia and industry.The spectral estimation method is usually used to calculate the frequency response function(FRF),which is extremely susceptible to length and quality of the measurement data.In recent years,the Bayesian learning technology has provided a new exploration approach for the system and the control field.Inspired by this,the prior information of the FRF is statistically described by a complex Gaussian process,and a Bayesian inference method is developed for estimating the FRF under impact loads.The maximum posteriori estimation of the FRF is obtained,and the variance of the FRF estimation is also given.Furthermore,the numerical positive definiteness for optimizing the hyper-parameters is improved by applying QR decomposition.Finally,the effectiveness and reliability of the proposed method are verified by numerical examples and vibration experiments.
作者 任程 刘世洲 郜伟 张二亮 REN Cheng;LIU Shizhou;GAO Wei;ZHANG Erliang(School of Mechanical and Power Engineering,Zhengzhou University,Zhengzhou 450001,China)
出处 《重庆理工大学学报(自然科学)》 CAS 北大核心 2023年第2期151-157,共7页 Journal of Chongqing University of Technology:Natural Science
基金 国家自然科学基金项目(61873244)。
关键词 冲击载荷 频率响应函数 高斯过程回归 贝叶斯推断 impact load frequency response function Gaussian process regression Bayesian inference
  • 相关文献

参考文献2

二级参考文献71

  • 1苏国韶,燕柳斌,张小飞,江权.基坑位移时间序列预测的高斯过程方法[J].广西大学学报(自然科学版),2007,32(2):223-226. 被引量:24
  • 2Williams C K I, Rasmussen C E. Gaussian processes for machine learning[M]. Cambridge: MIT Press, 2006: 7-32.
  • 3Kocijan J. Control algorithms based on Gaussian process models: A state-of-the-art survey[C].Proc of the Special Int Conf on Complex Systems: Synergy of Control, Communications and Computing. Ohrid, 2011: 69-80.
  • 4Park C W, Huang J H Z, Ding Y. Domain decomposition approach for fast Gaussian process regression of large spatial data sets[J]. J of Machine Learning Research, 2011, 12: 1697-1728.
  • 5He Z K, Liu G B, Zhao X J, et al. Temperature model for FOG zero-bias using Gaussian process regression[J]. Advances in Intelligent Systems and Computing, 2012, 180: 37-45.
  • 6Snelson E. Flexible and efficient Gaussian process models for machine learning[D]. London: Gatsby Computational Neuroscience Unit, University of London, 2007.
  • 7Williams C K I, Seeger M. Using the Nystrom method to speed up kernel machines[C]. Proc of the Int Conf on Advances in Neural Information Processing Systems(NIPS) 13. Denver, 2001: 682-688.
  • 8Wahba G. Spline models for observational data[M]. Philadelphia: Society for Industrial and Applied Mathematics, 1990: 95-100.
  • 9Poggio T, Girosi E Networks for approximation and learning[J]. Proc of IEEE, 1990, 78(9): 1481-1497.
  • 10Williams C K I, Rasmussen C E, Schwaighofer A, et al. Observations on the Nystrom method for Gaussian process prediction[C]. Proc of the NIPS 12. Denver, 2000: 464- 473.

共引文献186

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部