摘要
为探索协作机器人动态特性,提高末端定位精度,以库卡LBR轻型类人手臂协作机器人模型为例进行研究。基于RBF神经网络和滑模控制算法设计协作机器人动力学控制策略并分析动态特性和末端位置误差。基于Levenberg-Marquardt非线性阻尼最小二乘算法进行协作机器人参数辨识和误差补偿。ADAMS-Matlab联合仿真结果表明:基于RBF神经网络设计的滑模控制器动态控制效果较好,极限工况末端误差平均约为4.7 mm,主要是重力负载的影响。基于Levenberg-Marquardt非线性阻尼最小二乘算法进行变参数误差补偿后末端平均误差小于0.2 mm,有效提升了位置精度,为协作机器人的控制和误差补偿研究提供了理论基础。
As intelligent operating assistants,collaborative robots have opened up a wide range of application scenarios in fields of industry,service and medical treatment.In order to explore the dynamic characteristics of collaborative robots and improve the accuracy of terminal positioning,this paper takes the KUKA LBR lightweight humanoid arm collaborative robot model as an example for research.Based on the RBF neural network and the synovial control algorithm,the dynamic control strategy of the collaborative robot is designed and the dynamic characteristics and end position error are analyzed.Parameter identification and error compensation of collaborative robots are carried out based on the Levenberg-Marquardt nonlinear damping least squares algorithm.The ADAMS-Matlab joint simulation shows that the dynamic control effect of a sliding mode controller based on the RBF neural network is better.The average terminal error under an extreme working condition is about 4.7 mm,which is mainly due to the influence of gravity load.After variable parameter error compensation,the average terminal error is less than 0.2 mm,which effectively improves the position accuracy and provides a theoretical basis for the research of collaborative robot control and error compensation.
作者
秦蒙
陈良培
孟琨泰
QIN Meng;CHEN Liangpei;MENG Kuntai(School of Information Engineering,Chongqing Electric Power College,Chongqing 400053,China;Center for Opto-Eletronic Engineering and Technology,Shenzhen Institute of Advanced Technology,Chinese Academy of Sciences,Shenzhen 518055,China;Hebei Institute of Mechanical and Electrical Technology,Xingtai 054000,China)
出处
《重庆理工大学学报(自然科学)》
CAS
北大核心
2023年第2期215-224,共10页
Journal of Chongqing University of Technology:Natural Science
关键词
协作机器人
RBF神经网络
滑模控制
误差补偿
collaborative robot
RBF neural network
sliding mode control
error compensation