期刊文献+

Self-assembly process of organic small molecular gel and its molecular mechanism

原文传递
导出
摘要 Gel is a very diverse system that has pervaded our everyday life in a variety of forms. However, the mechanism of gel formation remains ambiguous. To better understand the mechanism of gel formation, cefpiramide was selected as model compound to investigate gel formation from molecular level, with the help of experimental research and molecular dynamics simulations. Dynamic light scattering was used to detect the process of the formation of fiber aggregates by the molecules in the gel process. The results indicated that in the process of low molecular weight gels, the molecules coalesce to form a fibrous network structure to wrap the liquid. Attenuated Total Reflectance Fourier Transform Infrared spectrometer and Raman spectroscopy were employed to explore the solute–solute and solute–solvent interactions, which indicated that the solvent molecules (formamide molecules) played a key role in the process of gel formation and the solute–solute interactions played a leading role. Finally, molecular dynamics simulations were employed to reveal the molecular mechanism of gel formation from molecular level.
出处 《Particuology》 SCIE EI CAS CSCD 2023年第1期122-133,共12页 颗粒学报(英文版)
基金 support of the National Natural Science Foundation of China(grant Nos.21978201 and 22108196).
  • 相关文献

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部