期刊文献+

Synthesis of Mn/Co-MOF for effective removal of U(VI) from aqueous solution 被引量:1

原文传递
导出
摘要 Ultrasound-assisted synthesis of Mn/Co-MOF nanomaterial was used to capture uranium from aqueous solutions. Tests of Scanning electron microscopy (SEM), X-ray photoelectron spectroscopy (XPS), Fourier transformed infrared spectra (FT-IR), Zeta potential analysis, thermogravimetric analysis (TGA), and X-ray diffraction (XRD) suggest that cobalt ions were replaced partially by manganese ions to generate MOF during the synthesis process and form manganous oxide particles loaded on the surface of Mn/Co-MOF. The optimal immobilization conditions of U(VI) were systematically studied by solution pH, kinetic, contact time and preparatory uranium concentration. XPS spectroscopy analysis indicated that the chelation of imidazole ring to uranium and Mn3O4 possibly played a certain role in the adsorption process. The results indicate that the adsorption isotherms of the Mn/Co-MOF for uranium suit Langmuir isotherm model (maximum adsorption capacity were 763.36 mg/g). Furthermore, the adsorption kinetics of Mn/Co-MOF match comfortably with the pseudo-second-order kinetic model.
出处 《Particuology》 SCIE EI CAS CSCD 2023年第1期134-144,共11页 颗粒学报(英文版)
基金 supported by the National Natural Science Foundation of China(grant No.21866005) Jiangxi Key Plan of Research and Development(grant No.20192BBH80011).
  • 相关文献

同被引文献8

引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部