期刊文献+

共掺杂策略协同激活阴离子氧化还原构建高容量钠离子电池层状氧化物阴极材料

Synergistic activation of anionic redox via cosubstitution to construct high-capacity layered oxide cathode materials for sodium-ion batteries
原文传递
导出
摘要 作为锂离子电池的潜在替代品,钠离子电池由于成本、安全性等方面的优势吸引了广泛关注.但如何进一步提高其正极材料的能量密度仍是挑战,而通过激活阴离子氧化还原提供额外容量是一种可行的策略.本文报告了一种高性能锰基氧化物正极材料,Na_(0.67)Mg_(0.1)Zn_(0.1)Mn_(0.8)O_(2)(NMZMO).通过共掺杂策略协同激活阴离子氧化还原,此材料首圈可以放出~233 mAh g^(-1)的超高容量,明显高于Mg或Zn单掺杂的同类材料.综合多种光谱技术,作者证明了更高的容量源于更强的阴离子氧化还原活性.结合中子全散射以及共振非弹性X射线散射发现,Mg与Zn在高电压下会向面外迁移至四面体位点,诱导面内重排形成空位团簇,将氧阴离子以分子O_(2)的形式困于其中.Mg/Zn共存时,刺激了彼此更多的向面外迁移,为形成更多晶内分子O_(2)提供先决条件.本文提出了关于阴离子氧化还原的新见解,并为高容量钠电正极材料的开发提供了理论依据. As a potential substitute for lithium-ion battery,sodium-ion batteries(SIBs)have attracted a tremendous amount of attention due to their advantages in terms of cost,safety and sustainability.Nevertheless,further improvement of the energy density of cathode materials in SIBs remains challenging and requires the activation of anion redox reaction(ARR)activity to provide additional capacity.Herein,we report a high-performance Mn-based sodium oxide cathode material,Na_(0.67)Mg_(0.1)Zn_(0.1)Mn_(0.8)O_(2)(NMZMO),with synergistic activation of ARR by cosubstitution.This material can deliver an ultra-high capacity of~233 mAh/g at 0.1 C,which is significantly higher than their single-cation-substituted counterparts and among the best in as-reported MgMn or ZnMn-based cathodes.Various spectroscopic techniques were comprehensively employed and it was demonstrated that the higher capacity of NMZMO originated from the enhanced ARR activity.Neutron pair distribution function and resonant inelastic X-ray scattering experiments revealed that out-of-plane migration of Mg/Zn occurred upon charging and oxygen anions in the form of molecular O_(2)were trapped in vacancy clusters in the fully-charged-state.In NMZMO,Mg and Zn mutually interacted with each other to migrate toward tetrahedral sites,which provided a prerequisite for further ARR activity enhancement to form more trapped molecular O_(2).These findings provide unique insight into the ARR mechanism and can guide the development of highperformance cathode materials through ARR enhancement strategies.
作者 季昊铖 季文海 薛浩宇 陈国捷 齐瑞 黄中垣 方辉 褚密海 刘乐乐 马哲文 徐沈阳 翟景俊 曾文 Christian Schulz Deniz Wong 陈怀灿 徐菊萍 殷雯 潘锋 肖荫果 Haocheng Ji;Wenhai Ji;Haoyu Xue;Guojie Chen;Rui Qi;Zhongyuan Huang;Hui Fang;Mihai Chu;Lele Liu;Zhewen Ma;Shenyang Xu;Jingjun Zhai;Wen Zeng;Christian Schulz;Deniz Wong;Huaican Chen;Juping Xu;Wen Yin;Feng Pan;Yinguo Xiao(School of Advanced Materials,Peking University Shenzhen Graduate School,Shenzhen 518055,China;Departments of Materials and Chemistry,University of Oxford,Oxford OX31PH,UK;College of Materials Science and Engineering,Chongqing University,Chongqing 400030,China;Helmholtz-Center Berlin for Materials and Energy,Berlin 14109,Germany;Spallation Neutron Source Science Center,Dongguan 523803,China)
出处 《Science Bulletin》 SCIE EI CAS CSCD 2023年第1期65-76,共12页 科学通报(英文版)
基金 supported by the National Key R&D Program of China(2020YFA0406203) Shenzhen Fundamental Research Program(GXWD20201231165807007-20200807125314001) the National Natural Science Foundation of China(U2032167 and 52072008)。
关键词 钠离子电池 正极材料 锂离子电池 阴极材料 层状氧化物 氧化还原 能量密度 高容量 Sodium-ion batteries Cathode Anionic redox Synergistic activation
  • 相关文献

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部