摘要
基于社团结构,提出模块度相似性的二分网络链路预测算法,克服了二分网络在链路预测中丢失社团结构信息的局限性。首先,通过定义二分模块度,利用奇异值分解,将网络中的节点嵌入到欧式空间中的向量。其次,提出二分网络模块度相似性的框架,利用向量余弦相似度定义二分网络节点对之间的模块度相似性指标(MS指标)。最后,基于小提琴图和评价指标AUC,在3个真实网络上进行模拟仿真,与9种链路预测相似性指标进行对比,证明MS指标用于二分网络链路预测具有较高的精度。
In this paper, a bipartite network link prediction algorithm for modularity similarity is proposed based on community structure. The limitations of bipartite networks in link prediction that lose community structure information are overcome. First, by defining the bipartite modularity and using singular value decomposition, the nodes in the network are embedded into vectors in the Euclidean space. Secondly,a framework for bipartite networks modularity similarity is proposed. The modularity similarity metrics(MS metrics) between pairs of nodes in the bipartite network are defined using vector cosine similarity. Finally, simulations are performed on three real networks based on violin graph and evaluation metrics AUC.The MS metrics are compared with nine link prediction similarity metrics. The MS metrics are used for bipartite networks link prediction with high accuracy.
作者
易兰兰
许英
王冉冉
YI Lanlan;XU Ying;WANG Ranran(School of Statistics and Data Science,Xinjiang University of Finance and Economics,Urumqi 830012 China;The Center for Disease Control and Prevention in Urumqi,Urumqi 830002 China)
出处
《西华大学学报(自然科学版)》
CAS
2023年第2期53-61,76,共10页
Journal of Xihua University:Natural Science Edition
基金
国家自然科学基金项目“大数据背景下网络舆情智能治理:共同体构建、协同演进与引导机制”(72164034)。
关键词
二分网络
链路预测
相似度
模块度
bipartite networks
link prediction
similarity
modularity