期刊文献+

梯次锂电池及其BMS的应用研究 被引量:2

Application research on cascade lithium battery and its battery management system(BMS)
下载PDF
导出
摘要 以退役的动力锂电池梯次应用性能为研究基础,运用分数阶卡尔曼滤波算法和粒子滤波算法公式推演验证,采用离线辨识法构建锂电池健康寿命模型,从而准确、快速地判别出锂电池的健康状态。用于梯次应用锂电池项目的电池管理系统,除常规的自动充放电控制,以及电流、电压和温度告警保护等功能外,分别从研究内容、试验方法和试验结果 3个方面,重点对健康状态、有源均衡和荷电状态等功能进行了研究。 Based on the research on the application performance of retired power lithium batteries,the fractional Kalman filter algorithm and the particle filter algorithm were used to deduce and verify the formula,and the offline identification method was used to build a lithium battery health life model,thereby accurately and quickly determine the health status of the lithium battery.The battery management system(BMS) could be used for echelon application lithium battery projects,in addition to the functions of conventional automatic charging discharge control and current,voltage,temperature alarm protection,from three aspects of research content,test methods and test results,the research was carried out focusing on functions such as health status,active balance and state of charge.
作者 朱明海 周寿斌 黄毅 ZHU Minghai;ZHOU Shoubin;HUANG Yi(Huafu(JiangSu)Lithium Battery High Technology Co.,Ltd.,Yangzhou 225600,China;Jiangsu Huafu High Technology Energy Storage Co.,Ltd.,Yangzhou 225600,China)
出处 《再生资源与循环经济》 2023年第2期38-43,共6页 Recyclable Resources and Circular Economy
基金 江苏省科技项目-面上项目:“退役锂离子动力电池梯次利用关键技术研究”(BE2020774)。
关键词 锂电池 梯次应用 电池管理系统 健康状态 有源均衡 荷电状态 离线辨识法 分数阶卡尔曼滤波算法 粒子滤波算法 echelonapplication BMS state of health active equalization state of charge
  • 相关文献

参考文献11

二级参考文献77

共引文献103

同被引文献18

引证文献2

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部