期刊文献+

基于粒子群算法与模拟退火算法的一种混合配电网重构算法 被引量:1

A Hybrid Distribution Network Reconstruction Algorithm Based on Particle Swarm Algorithm and Simulated Annealing Algorithm
下载PDF
导出
摘要 本文首先对配电网重构的意义,研究现状以及当下的几种方法等方面进行分析,并且对比了几种主要重构方法的优缺点。然后,介绍亚启发式算法中的粒子群算法与模拟退火算法,并将二者有效地进行融合互补,形成一种新的混合算法。此方法利用粒子群算法快速局部搜索能力和模拟退火算法全局收敛的优点,使其既能以较大的概率跳出局部的极值点,又能提高收敛速度。最后,将这种混合算法应用于配电网重构中,介绍了配电网的简化分析方法,并阐述了配电网的粒子群初始化、参数设置、编码规则等内容,并通过IEEE33节点和69节点系统基于MATLAB平台的仿真,验证算法的可行性和优越性。 This paper first analyzes the significance of distribution network reconstruction, the current research status and several current methods, and compares the advantages and disadvantages of several major methods.Then, the Particle Swarm optimization algorithm and the Simulated Annealing algorithm in the sub-heuristic algorithm are introduced, and the two are effectively fused and complementary to form a new kind of hybrid algorithm.This method takes advantage of the rapid local search ability of PSO and the global convergence of SA,so that it can not only jump out of the local extreme point with a large probability, but also improve the convergence speed.Finally, this hybrid algorithm is applied to the reconstruction of the distribution network, the simplified analysis method of the distribution network is introduced, and the particle swarm initialization, parameter setting, coding rules and other contents of the distribution network are elaborated, and the feasibility and superiority of the algorithm are verified through the simulation of the IEEE33 node and 69 node systems based on the MATLAB platform.
作者 黄晓旭 HUANG Xiao-xu(The UHV Branch Company of State Grid Power Co.Ltd.,Fuhou 350000,China)
出处 《电气开关》 2023年第1期35-40,共6页 Electric Switchgear
关键词 配电网络 粒子群算法 模拟退火算法 混合算法 distribution network particle swarm optimization PSO simulated annealing SA hybrid algorithm
  • 相关文献

参考文献3

二级参考文献34

  • 1田澎,杨自厚,张嗣瀛.一类非线性规划的模拟退火求解[J].控制与决策,1994,9(3):173-177. 被引量:11
  • 2张德富,顾卫刚,沈平.一种解旅行商问题的并行模拟退火算法[J].计算机研究与发展,1995,32(2):1-4. 被引量:11
  • 3邢文循 谢金星.现代优化计算方法[M].北京:清华大学出版社,1999.90-129.
  • 4Kennedy J, EberhartR. Particle swarm optimization[A]. Proceedings of IEEE Conference on Neural Networks[C]. Perth, Australia, 1995,4: 1942-1948.
  • 5Sensarma P S, Rahmani M. A comprehensive method for optimal expansion planning using particle swarm optimization [A]. Proceedings of the IEEE Power Engineering Society Transmission and Distribution Conference[C]. NewYork, USA, 2002: 1317-1322.
  • 6Chin Aik Koay, Dipti Srinivasan. Particle swarm optimization-based approach for generator maintenance scheduling[A]. Proceedings of the IEEE Swarm Intelligence Symposium 2003[C]. Indiana, USA, 2003:167-173.
  • 7Zwe-Lee Gaing. Discrete particle swarm optimization algorithm for unit commitment[A]. IEEE Power Engineering Society General Meeting[C]. Ontario, Canada, 2003: 418-424.
  • 8E1-Gallad A, El-Hawary M. Particle swarm optimizer for constrained economic dispatch with prohibited operating zones[A]. Canadian Conference on Electrical and Computer Engineering[C]. Manitoba,Canada, 2002: 78-81.
  • 9Jong-Bae park, Ki-Song Lee. Economic load dispatch for non-smooth cost functions using particle swarm optimization[A]. IEEE Power Engineering Society General Meeting[C]. Ontario, Canada, 2003:938-943.
  • 10Zwe-Lee Gaing. Particle swarm optimization to solving the econonmic dispatch considering the generator constraints[J]. IEEE Trans on Power Systems, 2003, 18(3): 1187-1195.

共引文献252

同被引文献36

引证文献1

二级引证文献2

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部