期刊文献+

面向三支群决策的多粒度图像模糊概率粗糙集研究

Research on Multigranulation Picture Fuzzy Probabilistic Rough Sets for Three-way Group Decisions
原文传递
导出
摘要 随着新兴产业的快速发展,社会经济中各类复杂决策问题不断涌现,复杂决策问题的有效求解离不开推进体现科学化与民主化的群决策。图像模糊集作为直觉模糊集的推广形式,在实际应用中能够高效处理信息不一致的问题。本文针对图像模糊三支群决策问题,由于传统损失函数受决策者主观因素的影响进而在构造阈值时各有不同,探索了面向三支群决策的多粒度图像模糊概率粗糙集模型与方法。首先,本文将图像模糊的概念与三支群决策模型相结合,提出可调多粒度图像模糊概率粗糙集模型。然后,计算属性权重和专家权重时运用离差最大法。鉴于VIKOR(多准则妥协解排序)法能够同时考虑群体效用最大化和个体遗憾最小化并融入决策者主观偏好,利用VIKOR法进行多粒度图像模糊粗糙隶属度的最优粒度选择,进而建立图像模糊三支群决策方法。最后,通过一个UCI(University of California Irvine)数据库中的实例证实本文所构建方法的可行性。 With the rapid development of emerging industries, various complicated decision-making problems are constantly appearing in social economies, hence pursuing group decision-making that reflects the scientization and democratization is imperative for effectively addressing complex decision-making problems. Moreover, picture fuzzy sets act as the extension of intuitionistic fuzzy sets, which are conducive to addressing inconsistent problems in realistic applications. Aiming at picture fuzzy three-way group decision-making issues, in order to address the influence of decision-makers’ subjective factors when using classic loss functions to construct thresholds that may trigger different thresholds, the paper explores multigranulation picture fuzzy probabilistic rough set models and methods for three-way group decisions. First, the notion of picture fuzziness is introduced to three-way group decision models, and adjustable multigranulation picture fuzzy probabilistic rough sets are put forward. Then, attribute weights and expert weights are calculated according to the maximum deviation method. In view of the VIKOR(VlseKriterijumska Optimizacija I Kompromisno Resenje) method is able to incorporate maximum group utilities and minimum individual regrets with decision-makers’ subjective preferences, optimal granularity selections in terms of multi-granularity picture fuzzy rough memberships are conducted in light of the VIKOR method, and a picture fuzzy three-way group decision-making method is eventually established. At last, an example from the UCI(University of California Irvine) database is used to verity the feasibility of the proposed method.
作者 侯浩楠 张超 申利华 李德玉 王志文 张颖 HOU Hao-nan;ZHANG Chao;SHEN Li-hua;LI De-yu;WANG Zhi-wen;ZHANG Ying(School of Computer and Information Technology,Shanxi University,Taiyuan 030006,China;Key Laboratory of Computational Intelligence and Chinese Information Processing of Ministry of Education(Shanxi University),Taiyuan 030006,China;Shanxi Information Industry Technology Research Institute Co.,Ltd.,Taiyuan 030012,China)
出处 《模糊系统与数学》 北大核心 2022年第6期161-174,共14页 Fuzzy Systems and Mathematics
基金 国家自然科学基金资助项目(62272284,62072294,61972238) 山西省科技创新人才团队专项 信息技术应用创新省技术创新中心项目(202104010911033) 山西省数字经济发展研究项目(202104031402023) 山西省高等学校青年科研人员培育计划项目 山西省高等学校优秀成果培育项目(2019SK036) 山西省筹资金资助回国留学人员科研项目(2022-007) 2022年度山西大学研究生教育创新项目。
关键词 图像模糊集 三支决策 多粒度 群决策 VIKOR Picture Fuzzy Set Three-way Decision Multi-granularity Group Decision-making VIKOR
  • 相关文献

参考文献3

二级参考文献95

  • 1王飞跃.平行系统方法与复杂系统的管理和控制[J].控制与决策,2004,19(5):485-489. 被引量:332
  • 2孙权森,曾生根,王平安,夏德深.典型相关分析的理论及其在特征融合中的应用[J].计算机学报,2005,28(9):1524-1533. 被引量:89
  • 3李国杰.大数据研究的科学价值.中国计算机学会通讯,2012,8(9):8—15.
  • 4Lynch C, Goldston D, Howe D, et al. Big data. Nature, 2008, 455: 1-136.
  • 5Science Staff. Dealing with data. Science, 2011, 331: 639-806.
  • 6Wu X D, Zhu X Q, Wu G Q, et al. Data mining with big data. IEEE Trans Knowl Data Eng, 2014, 26: 97-107.
  • 7Das S, Sismanis Y, Beyer K S, et al. Ricardo: intergrating R and Hadoop. In: Proceedings of the 2010 ACM SIGMOD International Conference on Management of Data, New York, 2010. 987-998.
  • 8Wegener D, Mock M, Adranale D, et al. Toolkit-based high-performance data mining of large data on MapReduce clusters. In: Proceedings of the 2009 IEEE International Conference on Data Mining Workshops, Washington, 2009.296-301.
  • 9Iris M, Klaus B, Rainer G, et al. Mind the gap: large-scale frequent sequence mining. In: Proceedings of the 2013 ACM SIGMOD International Conference on Management of Data, New York, 2013. 797-808.
  • 10Alina E, Sungjin I, Benjamin M. Fast clustering using MapReduce. In: Proceedings of the 17th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, New York, 2011. 681-689.

共引文献145

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部