期刊文献+

基于循环注意力机制的隐形眼镜虹膜防伪检测方法 被引量:4

Anti-Spoofing Detection Method for Contact Lens Irises Based on Recurrent Attention Mechanism
原文传递
导出
摘要 虹膜纹理容易被纹理隐形眼镜隐藏甚至伪造,进而对虹膜识别系统的安全性构成了威胁。针对真实虹膜与纹理隐形眼镜伪造虹膜光学特性和纹理特征差异较小的问题,提出了一种循环注意力隐形眼镜虹膜防伪检测方法RAINet。利用循环注意力机制对能区分真伪虹膜的关键区域进行无监督定位,并通过多层级特征融合提升防伪检测精度,构建了端到端防伪检测网络,无需图像预处理即可直接进行真伪特征检测。采用MobileNetV2作为特征分类网络,在保持检测精度的同时,减少了网络的参数量和计算量。在包含真实虹膜样本和隐形眼镜虹膜样本的两个公开数据库(IIITD CLI和ND系列)上进行了实验验证。结果表明,RAINet的检测精度优于其他防伪检测网络,在同传感器、跨传感器和跨数据库实验条件下的平均正确分类率分别可达到99.93%、97.31%和97.86%。 Iris textures are easily hidden or even forged by textured contact lenses,which further threatens the security of the iris recognition system.Considering the tiny differences in the optical properties and texture features of authentic irises and irises forged by textured contact lenses,this paper proposes an anti-spoofing detection method for contact lens irises based on recurrent attention,namely recurrent attention iris net(RAINet).Specifically,the recurrent attention mechanism is employed to locate the key regions that can be used to distinguish authentic irises from forged ones in an unsupervised manner,and multi-level feature fusion is applied to improve the anti-spoofing detection accuracy.An end-to-end antispoofing detection network is built for the direct detection of authentic and forged features without image pre-processing.MobileNetV2 is used as the feature classification network to reduce the number of parameters and amount of computation of the network in addition to maintaining the detection accuracy.Experimental verification is performed on two public databases(IIITD CLI and ND series)containing both authentic iris samples and contact lens iris samples.The results show that the proposed RAINet outperforms other anti-spoofing detection networks in detection accuracy.Its average correct classification rates under intra-sensor,inter-sensor,and inter-database experimental conditions reach 99.93%,97.31%,and 97.86%,respectively.
作者 吕梦凌 何玉青 杨峻凯 金伟其 张丽君 Lü Mengling;He Yuqing;Yang Junkai;Jin Weiqi;Zhang Lijun(Key Laboratory of Photoelectronic Imaging Technology and System,Ministry of Education,School of Optics and Photonics,Beijing Institute of Technology,Beijing 100081,China)
出处 《光学学报》 EI CAS CSCD 北大核心 2022年第23期154-164,共11页 Acta Optica Sinica
基金 国家重点研发计划(2020YFF0304104)。
关键词 机器视觉 纹理隐形眼镜 虹膜防伪检测 循环注意力机制 多层级特征融合 machine vision textured contact lens iris anti-spoofing detection recurrent attention mechanism multi-level feature fusion
  • 相关文献

参考文献6

二级参考文献35

  • 1邢磊,施鹏飞.虹膜图像的质量评价方法[J].中国体视学与图像分析,2003,8(2):108-113. 被引量:10
  • 2王向军,张敏,周鑫玲,刘冀.非接触式虹膜图像获取及特征提取方法的研究[J].光学学报,2005,25(3):319-323. 被引量:9
  • 3李振华,敬忠良,孙韶媛,刘刚.基于方向金字塔框架变换的遥感图像融合算法[J].光学学报,2005,25(5):598-602. 被引量:30
  • 4苑玮琦,徐露,林忠华.基于灰度曲面匹配的虹膜识别方法[J].光学学报,2006,26(10):1537-1542. 被引量:18
  • 5John G. Daugman. High confidence visual recognition of persons by a test of statistical independence[J]. IEEE Trans. Patern Analysis and Machine Intelligence, 1993, 15:1148-1161
  • 6Xiaoyan Yuan, Pengfei Shi. Iris feature extraction using 2D phase congruency[C]. Proc. Third International Conference on Information Technology and Applications (ICITA'05) , 2005, 2:437-441
  • 7Geraldo Williams. Iris recognition technology [J]. IEEE Aerospace and Electronics Systems Magazine, 1997, 12 (4): 23-29
  • 8Yingzi Du, Bradford Bonney, Robert Ives et al.. Analysis of partial Iris recognition using a 1-D approach[J]. IEEE, 2005, 2: 961-964
  • 9Milena Bueno Pereira, AntOnio Claudio Paschoarelli Veiga. Application of genetic algorithms to improve the reliability of an iris recognition system[J]. IEEE, 2005, 1:159-164
  • 10Milena Bueno Pereira, Antonio Claudio Paschoarelli Veiga. A method for improving the reliability of an iris recognition system [J]. IEEE, 2005, 2:665-668

共引文献90

同被引文献33

引证文献4

二级引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部