期刊文献+

基于多尺度密集对比增强自监督的简统化接触网缺陷检测

下载PDF
导出
摘要 针对简统化接触网缺陷检测缺陷样本少、目标小、类别多的问题,提出基于多尺度密集对比增强自监督的简统化接触网缺陷检测方法。利用编码器提取多尺度特征,构建多尺度对比和密集对比更新模型,通过迁移学习的方式获取预训练模型,进而获得高精度缺陷检测模型。实验证明本文所述方法具有一定的可行性和有效性,对于研发可实际应用的简统化接触网缺陷检测系统具有重要意义。 With regard to the problems of few samples,minor targets and many categories of defects of simplified and unified OCL for inspection.The paper proposes a simplified and unified OCL defect inspection method based on multi-scale dense contrast enhanced self-monitoring.The encoder is used to extract multi-scale features,build multi-scale contrast and intensive contrast update models,and obtain pre-training models through transfer learning,thus obtaining high-precision defect inspection models.The experiment proves that the method described in the paper is feasible and effective,and it is of great significance for the development of a practical simplified and unified OCL defect inspection system.
出处 《电气化铁道》 2022年第S01期52-57,共6页 Electric Railway
基金 中国国家铁路集团有限公司科技研究开发计划(N2021G039)。
关键词 简统化接触网 缺陷检测 自监督对比学习 simplified and unified OCL defect inspection self-monitored contrastive learning
  • 相关文献

参考文献8

二级参考文献43

共引文献33

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部