期刊文献+

考虑风电消纳多向量流系统的遗传优化方法 被引量:2

Genetic optimization method for multi-vector flow system considering wind power consumption
下载PDF
导出
摘要 随着全球能源短缺问题的加剧,风电的大规模消纳显得十分重要。为了克服风电大规模消纳困难的问题,提出一种多矢量储氢发电系统的遗传优化方法。分别研究分析风力风电、氢储能系统、储气罐中的等效荷电状态的数学模型,建立以风电本地消纳最大化为目标的联合优化模型,结合多种约束条件,通过遗传算法实现能量流最优解的求取。以东北某地区的实际测量数据为基础,进行了案例分析。通过对系统在运行过程中的风电消纳效果进行比较,验证了所提方法能够有效减少交互电量,实现了风电本地消纳最大化。 With the intensification of global energy shortage problem,the large-scale consumption of wind power is very important.In order to overcome the difficulty of large-scale wind power consumption,a genetic optimization method for a multi-vector hydrogen storage power generation system is proposed in this paper.This paper studies and analyzes mathematical models of equivalent state of charge in wind power,hydrogen energy storage systems,and gas storage tanks separately,and establishes a joint optimization model with the goal of maximizing local wind power consumption.Combined with various constraints,the genetic algorithm is used to achieve to find the optimal solution of energy flow.Based on the actual measurement data of a certain area in Northeast China,a case analysis is carried out.By comparing the effects of wind power consumption during the operation of the system,it is verified that the proposed method can effectively reduce the interaction power and maximize the local wind power consumption.
作者 张启龙 陈湘萍 Zhang Qilong;Chen Xiangping(School of Electrical Engineering,Guizhou University,Guiyang 550025,China)
出处 《电测与仪表》 北大核心 2023年第3期115-121,共7页 Electrical Measurement & Instrumentation
基金 国家自然科学基金资助项目(51867007) 贵州省自然科学基金资助项目(黔科合J字[2015]2034号)。
关键词 风电消纳 遗传算法 氢储能系统 能量优化方法 wind power consumption genetic algorithm hydrogen energy storage system energy optimization method
  • 相关文献

参考文献5

二级参考文献66

  • 1邵迪,胡敏,代正华,龚欣.风电/煤制天然气集成系统的研究[J].化学世界,2012,53(S1):70-71. 被引量:3
  • 2张步涵,曾杰,毛承雄,金玉洁,王云玲.电池储能系统在改善并网风电场电能质量和稳定性中的应用[J].电网技术,2006,30(15):54-58. 被引量:227
  • 3世界风能协会(word wind energy association,WWEA).2010年度世界风能发展[EB/OL].2011.http//www.wwindea.org/home/images/stories/Pdfs/WordwindenergyrepOrt10_c.pdf.
  • 4Kariniotakis G N, Stavrakakis G S, Nogaret E F. Wind power forecasting using advanced neural networks models [J]. IEEE Trans. on Energy Conversion, 1996, 11(4): 762-767.
  • 5Pinson P. Estimation of the uncertainty in wind power forecasting[D]. Paris: Ecole des Mines de Paris, 2006.
  • 6Pinson P, Juban J, Kariniotakisg N. On the quality and value of probabilistic forecast of wind generation[C]// Proceedings of the 9^th International Conference on Probabilistic Methods Applied to Power System. Stockholm, Sweden: ASME, 2006: 7.
  • 7Kyung S K, McKenzie K J, Liu Y L, et al. A study on applications of energy storage for the wind power operation in power systems[C]//IEEE Power Engineering Society General Meeting. Montreal Quebec, Canada: IEEE, 2006: 1-5.
  • 8Francois B, Hissel D, Iqbal M T. Dynamic modelling of a fuel cell and wind turbine DC-linked power system[C]//2005 Electrimacs Confe- rence. Hammamet, Tunisia: [s.n.], 2005: 17-20.
  • 9蒋东方.氢氧联合循环与风能耦合发电系统可行性分析[M].北京:华北电力大学,2012:15-30.
  • 10Tao Z, Bruno F. Real-time emulation of a hydrogen production process for assessment of an active wind-energy conversion system[J]. IEEE Transactions on Industrial Electronics, 2009, 56(3): 737-747.

共引文献270

同被引文献32

引证文献2

二级引证文献9

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部