摘要
针对测井车载数据中心设备提出一种基于贝叶斯网络(BN)的故障诊断方法,并建立了故障诊断BN模型,实现了测井车载数据中心设备的智能化诊断。在建立BN模型过程中,采用基于粗糙集的知识约简方法对专家提出的故障节点进行简化,利用专家知识初步构建BN结构,使用K2学习算法对BN进行优化;同时结合专家经验知识,用EM算法对BN进行参数学习,得到测井车载数据中心设备故障诊断BN模型。运用BN模型进行故障案例推理,基于历史数据对BN模型进行验证,结果表明该模型诊断准确率较高,能够为测井车载数据中心设备故障的快速定位和精确诊断提供依据。
The fault diagnosis method based on Bayesian network(BN)is proposed for the logging onboard data center equipment.Meanwhile,the BN model for fault diagnosis is established to allow the logging onboard data center equipment to came under intelligent diagnosis.In the process of building the BN model,the knowledge reduced and simplified method based on the rough set is adopted to simplify the failure nodes put forward by experts.The BN structure is initially constructed on the basis of experts’knowledge,with the K2 learning algorithm used for BN optimization.Combined with the experience and knowledge of experts,the EM algorithm is used to learn the parameters for BN,thus acquiring the fault-diagnosed BN model of the logging onboard data center equipment.The BN model is used to diagnose the fault cases while the historical data are based to verify the BN model.The results indicates that the model has a higher correction rate of diagnosis and the ability to provide the basis for rapidly positioning and precisely diagnosing the fault of the logging onboard data center equipment.
作者
夏大坤
舒欢
高凌云
吴德银
宫玉明
贺东洋
陈茂柯
Xia Dakun;Shu Huan;Gao Lingyun;Wu Deyin;Gong Yuming;He Dongyang;Chen Maoke(Manufacturing Company,CNPC Logging Co.Ltd.,Xi’an 710000,China;College of Mechanics and Vehicle Engineering,Chongqing University,Chongqing 400044,China;Southwest Company,CNPC Logging Co.Ltd.,Chongqing 400021,China)
出处
《石油科技论坛》
2023年第1期53-60,85,共9页
PETROLEUM SCIENCE AND TECHNOLOGY FORUM
基金
中国石油集团测井有限公司制造公司科研项目“中油测井安全信息化设备运维系统研究”(编号:2021-04-11)。
关键词
测井车载数据中心
设备故障诊断
贝叶斯网络
模型构建
专家知识库
logging onboard data center
diagnosis of equipment fault
Bayesian network
building of model
databank of experts