摘要
针对交通标志识别任务中存在识别精度低、检测速度慢等问题,提出了一种基于改进YOLOv5的交通标志识别模型。首先使用轻量型网络Shufflenetv2替换YOLOv5主干网络提高模型检测速度;然后采用BiFPN作为Neck层中的特征融合结构,实现多尺度融合;最后使用K-means算法重新获取模型初始锚框值。实验结果表明,改进后的网络模型识别精度优于原始YOLOv5,提高了对交通标志的识别效果。
出处
《信息技术与信息化》
2023年第2期30-33,共4页
Information Technology and Informatization