期刊文献+

角度差异强化的光场图像超分网络 被引量:1

Light field image super-resolution network based on angular difference enhancement
下载PDF
导出
摘要 由于采用了更为先进的成像技术,光场相机可以同步获取场景的空间信息与角度信息。该技术以牺牲空间分辨率为代价,实现了更高维度的场景表示。为了提高光场相机拍摄场景的空间分辨率,本文搭建了角度差异强化的光场超分辨率重构网络。该网络先采用8个多分支残差块实现浅层特征提取,再采用4个强化的角度可变形对准模块实现深层特征提取,最后采用6个简化的残差特征蒸馏模块和像素洗牌模块完成数据重构。所提网络在利用光场角度差异完成空间信息超分时,更加强调视图自身特征的深入挖掘,以获得更加丰富的视图间差异特征。在5组公开的光场数据集上对本文所提网络的性能进行了验证,本文算法获得了PSNR、SSIM值更高的高分辨率光场子孔径图像。 Based on the advanced imaging technology,light field camera can obtain the spatial information and the angular information of the scene synchronously.It achieves higher dimensional scene representation by sacrificing the spatial resolution.In order to improve the spatial resolution of the light field image,a light field super-resolution reconstruction network based on angle difference enhancement is built in this paper.In the proposed network,eight multi-branch residual blocks are used to extract shallow features.Then,four enhanced angular deformable alignment modules are used to extract deep features.Finally six simplified residual feature distillation modules and pixel shuffle modules are used to complete data reconstruction.The proposed network takes advantage of the angle difference of the light field to complete the spatial information super-resolution.In order to obtain more features difference between different views,the own feature of the single view is emphasized during the feature extraction.The performance of the proposed network is verified on five public light field data sets.The proposed algorithm obtains high-resolution light field sub-aperture images with higher PSNR and SSIM.
作者 吕天琪 武迎春 赵贤凌 Lv Tianqi;Wu Yingchun;Zhao Xianling(School of Electronic and Information Engineering,Taiyuan University of Science and Technology,Taiyuan,Shanxi 030024,China)
出处 《光电工程》 CAS CSCD 北大核心 2023年第2期48-60,共13页 Opto-Electronic Engineering
基金 国家自然科学基金资助项目(61601318) 山西省基础研究计划资助项目(202103021224278) 山西省回国留学人员科研资助项目(2020-128)。
关键词 光场相机 超分辨率重构 残差 可变形卷积 残差特征蒸馏 light field camera super-resolution reconstruction residual deformable convolution residual feature distillation
  • 相关文献

参考文献1

二级参考文献2

共引文献8

同被引文献8

引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部