期刊文献+

分子束外延GaAs/Si(001)材料反相畴的湮灭机理 被引量:3

Annihilation Mechanism of Antiphase Domains in GaAs/Si(001)Materials Grown by Molecular Beam Epitaxy
原文传递
导出
摘要 从第一性原理出发,计算了不同温度下GaAs材料中沿{110}、{111}和{112}面传播的反相畴(APD)形成能,探索了反相畴的湮灭机理。结果表明,当温度达到660 K以上时,APD最稳定的传播晶面从{110}转变到{112}。通过分子束外延(MBE)技术,在无偏角Si(001)衬底上生长了1.4μm厚的GaAs外延层。测试结果表明,随着生长温度的升高,APD密度降低,不同传播面的湮灭现象增加。反相畴在较高的生长温度下更易于扭折到{112}面,从而与其他反相畴相遇并发生湮灭。该结果对全MBE生长高性能无偏角硅基激光器研究具有重要意义。 Objective Anunprocessed,on-axis Si substrate has a single-layer atomic step structure on its surface.The epitaxial growthofⅢ-Ⅴmaterials on substrates results in the high-energy planar defect called antiphasedomain(APD).The APD reduces the minority carrier lifetime in devices,degrading the performance of devices.Placing an on-axis Si substrate in the hydrogen environment for high-temperature annealing can promote the transformation of single-layer atomic steps into double-layer atomic steps and suppress APD generation at the Ga As/Si interface.However,the molecular beam epitaxy(MBE)technology cannot take hydrogen as annealing environment.Existing experimental methods involve changing the experimental process,which is unique and difficult to reproduce,to promote the annihilation of APD in Ga As materials.However,the APD annihilation mechanism remains unclear.In this study,the formation energyof APD propagating along the{110},{111},and{112}planes in Ga As materials at different temperatures is calculated using the first principle to explore the APD annihilation mechanism.The most stable propagating plane of the APD changes from{110}to{112}when the temperature exceeds 660 K.A 1.4-μm thick Ga As epitaxial layer is grown on an on-axis Si(001)substrate using the MBE technology.The results demonstrate that the APD density on the Ga As surface decreases and the annihilation probability of the APD increases with an increase in the growth temperature.At high growth temperatures,the APD can easily be twisted to the{112}plane and annihilate.Methods Aiming at the phenomenon of APD kink and annihilation in on-axis Ga As/Si(001)epitaxial materials,this paper presents the detailed exploration and analysis of theoretical simulations and experiments,respectively.According to the different propagation planes of the APD in Ga As,APD models propagating along the{110},{111},and{112}planes are established.The APD formation energy on these three propagation surfaces and their variation trends with temperature are obtained using the first principle.Experimentally,Ga As epitaxial layer is grown on an on-axis Si(001)substrate based on the MBE technology using a three-step method.Atomic force microscopy(AFM)and transmission electron microscopy(TEM)are used to characterize the surfaces and cross sections of the samples.Results and Discussions The APD formation energy on different propagation planes varies with temperatures.At0--660K,the APD formation energy on the{110}propagation plane is the lowest,and at 660--1500K,the APD formation℃,the higher the growth energy on the{112}propagation plane is the lowest(Fig.3).In the range of 450--600temperature,the lower the APD density(Fig.5)and the higher the APD annihilation degree in the sample(Fig.6),which is consistent with the calculated results.Conclusions In this study,the formation energy of APDs propagating along the{110},{111},and{112}planes in Ga As is calculated based on the first principle,and the effect of growth temperature on the APD formation energy in vacuum environment is determined.The theoretical results demonstrate that,at 0 K,the formation energy of the APD propagating along the{110}plane is the lowest;in the temperature range of 0--660K,the formation energy of the APD propagating along the{110}plane is the lowest;and in the temperature range of 660--1500K,the APD propagating along the{112}plane has the lowest formation energy.The experimental results demonstrate that when the temperature increases from 450℃to 600℃,the APD density decreases by 42%,and in the sample with a growth temperature of500℃,more APDs along the{112}plane are found to meet other APDs and annihilate.A higher growth temperature promotes the kink of the APD to the{112}plane and then the APD annihilates in the Ga As material with a certain thickness,which is consistent with the theoretical calculation results.In this study,based on the first principle and MBE technology,experimentally the propagation characteristics of APD in on-axis Ga As/Si(001)materials are theoretically analyzed and verified.The results have a guiding significance for the experimental process exploration of growing high quality APD-free Ga As materials on on-axis Si(001)substrates by MBE technology and promote the research on highperformance on-axis silicon-based lasers by MBE technology.
作者 肖春阳 王俊 李家琛 王海静 贾艳星 马博杰 刘倬良 明蕊 白一鸣 黄永清 任晓敏 罗帅 季海铭 Xiao Chunyang;Wang Jun;Li Jiachen;Wang Haijing;Jia Yanxing;Ma Bojie;Liu Zhuoliang;Ming Rui;Bai Yiming;Huang Yongqing;Ren Xiaomin;Luo Shuai;Ji Haiming(State Key Laboratory of Information Photonics and Optical Communications,School of Electronic Engineering,Beijing University of Posts and Telecommunications,Beijing 100876,China;State Key Laboratory of New Emergy Power System,North China Electric Power University,Beijing 102206,China;Key Laboratory of Semiconductor Materials Science,Institute of Semiconductors,Chinese Academy of Sciences,Beijing 100083,China)
出处 《中国激光》 EI CAS CSCD 北大核心 2022年第23期33-38,共6页 Chinese Journal of Lasers
基金 国家自然科学基金(61874148,61974141) 国家重点研发计划重点专项课题(2018YFB2200104) 北京市科技计划课题(Z191100004819012) 北京市自然科学基金(4212055) 国家创新研究群体科学基金(62021005) 高校学科创新引智计划项目(BP0719012)。
关键词 材料 硅基激光器 第一性原理 分子束外延 反相畴 无偏角Si(001) materials lasers on silicon first principle molecular beam epitaxy antiphase domain on-axis Si(001)
  • 相关文献

参考文献6

二级参考文献106

  • 1仲莉,王俊,冯小明,王勇刚,王翠鸾,韩琳,崇锋,刘素平,马骁宇.808nm大功率无铝有源区非对称波导结构激光器[J].中国激光,2007,34(8):1037-1042. 被引量:18
  • 2N. N. Ledentsov, V. A. Shchukin, M. Grundmann et al.. Direct formation of vertically coupled quantum dots in Stranski- Krastanov growth [J]. Phys. Rev. B, 1996, 54 (12): 8743-8746.
  • 3J. Tersoff, C. Teichert, M. G. Lagally. Self-organization in growth of quantum dot superlattices [J]. Phys. Rev. Lett., 1996, 76(10): 1675-1678.
  • 4D. Leonard, M. Krishnamurthy, C. M. Reaves et al.. Direct formation of quantum-sized dots from uniform coherent islands of InGaAs on GaAs surfaces [J]. Appl. Phys. Lett., 1993, 63(23): 3203-3205.
  • 5Q. Xie, A. Madhukar, P. Chenet al.. Vertically self-organized InAs quantum box islands on GaAs [J]. Phys. Rev. Lett. , 1995, 75(13) : 2542-2544.
  • 6G. S. Solomon, J. A. Trezza, A. F. Marshall et al.. Other stacked quantum dot systems include Ge/Si [J]. Thin Solid Films, 1997, 294(1-2): 296-299.
  • 7B. Ilahi, L. Sfaxi, F. Hassenet al.. Optimizing the spacer layer thickness of vertically stacked InAs/GaAs quantum dots [J]. Mater. Sci. Engng. C, 2006, 26(2-3):374-376.
  • 8Y. Furukawa, S. Noda, M. Ishii et al.. Stacking number dependence of size distribution of vertically stacked InAs/GaAs quantum dots[J]. Electron. Mater. , 1999, 28(5): 452-454.
  • 9Y. Chen, X. W. Lin, Z. L.-Weberet al.. Dislocation formation mechanism in strained InxGa1-xAs islands grown on GaAs(001) substrates[J]. Appl. Phys. Lett., 1996, 68(1): 111-113.
  • 10J. Y. Yao, T. G. Andersson, G. L. Dunlop. The interracial morphology of strained epitaxial InxGa1-xAs/GaAs [J]. Appl. Phys., 1991, 69(4): 2224-2226.

共引文献73

同被引文献16

引证文献3

二级引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部