期刊文献+

Birefringent response of graphene oxide film structurized via femtosecond laser 被引量:1

原文传递
导出
摘要 In-plane birefringent materials present an effective modulation of the optical properties and more degrees of freedom for the signal detection in low dimension,and thus remain a hot topic in realizing the integrated,miniature,and flexible devices for multiple applications.Here,the artificial in-plane birefringence properties have been successfully achieved on a graphene oxide film by a novel femtosecond laser lithography method,which provides a high-speed,large-area,and regular subwavelength gratings(~380 nm)fabrication and photoreduction.The obtained sample manifests an evident optical birefringence(~0.18)and anisotropic photoresponse(~1.21)in the visible range,both of which can be significantly modulated by either the structural morphology or the degree of oxide reduction.Based on the analysis of effective-medium theory and measurements of angle-resolved polarized Raman spectroscopy,the artificial in-plane birefringence is originated from various optical responses of the periodic subwavelength structures for the incident light with different polarization states.This technique shows great advantages for the fabrication of integrated in-plane polarization-dependent devices,which is expected to solve the problems in this field,such as the deficient selection of materials,complex design of micro/nanostructure,and inflexible processing technology.
出处 《Nano Research》 SCIE EI CSCD 2022年第5期4490-4499,共10页 纳米研究(英文版)
基金 The research is financially supported by the K.C.Wong Education Foundation(No.GJTD-2018-08) the National Natural Science Foundation of China(Nos.91750205,11674178,and 11804334) the Jilin Provincial Science&Technology Development Project(No.20180414019GH)。
  • 相关文献

同被引文献5

引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部