摘要
In this paper,the authors consider the local well-posedness for the derivative Schrödinger equation in higher dimension ut-iΔu+|u|^(2)(→γ·▽u)+u^(2)(→λ·▽-u)=0,(x,t)∈R^(n)×R,→γ,→λ∈R^(n);n≥2 It is shown that the Cauchy problem of the derivative Schrödinger equation in higher dimension is locally well-posed in H^(s)(R^(n))(s>n/2)for any large initial data.Thus this result can compare with that in one dimension except for the endpoint space H^(n/2).